Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomark Res ; 12(1): 68, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039607

ABSTRACT

BACKGROUND: Insulin-like growth factor (IGF)-1 and its binding proteins are important in cancer growth, especially in prostate cancer. Observational studies suggest that protein restriction can lower IGF-1 levels. However, it is unclear whether an isocaloric protein-restricted diet affects IGF-1 and IGFBPs in men with prostate cancer. METHODS: In this academic, single-center, parallel-group, prospective, randomized, open-label, blinded end-point trial, 38 consenting overweight (BMI 30.5 ± 5.5 kg/m2) men with localized prostate cancer, aged 43-72 years, were randomized (1:1) with permuted blocks to 4-6 weeks of customized isocaloric PR diets (0.8 g protein/kg lean body mass) or their usual diet. Biomarkers influencing cancer biology, including serum IGF-1 and its binding proteins were measured longitudinally. RESULTS: Contrary to our hypothesis, feeding individuals an isocaloric protein-restricted diet did not result in a significant reduction in serum IGF-1. Moreover, there was no observed increase in serum IGFBP-1 or IGFBP-3 concentration. CONCLUSION: These findings demonstrate that protein restriction without calorie restriction does not reduce serum IGF-1 concentration or increase IGFBP-1 and IGFBP-3 in men with localized prostate cancer. Further research is needed to identify dietary interventions for safely and effectively reducing IGF-1 in this patient group.

2.
Mol Cancer Ther ; 22(12): 1413-1421, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37683275

ABSTRACT

Diffuse intrinsic pontine gliomas (DIPG) are an incurable childhood brain cancer for which novel treatments are needed. DIPGs are characterized by a mutation in the H3 histone (H3K27M), resulting in loss of H3K27 methylation and global gene dysregulation. TRX-E-009-1 is a novel anticancer agent with preclinical activity demonstrated against a range of cancers. We examined the antitumor activity of TRX-E-009-1 against DIPG neurosphere cultures and observed tumor-specific activity with IC50s ranging from 20 to 100 nmol/L, whereas no activity was observed against normal human astrocyte cells. TRX-E-009-1 exerted its anti-proliferative effect through the induction of apoptotic pathways, with marked increases in cleaved caspase 3 and cleaved PARP levels, while also restoring histone H3K27me3 methylation. Co-administration of TRX-E-009-1 and the histone deacetylase (HDAC) inhibitor SAHA extended survival in DIPG orthotopic animal models. This antitumor effect was further enhanced with irradiation. Our findings indicate that TRX-E-009-1, combined with HDAC inhibition, represents a novel, potent therapy for children with DIPG.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Child , Animals , Humans , Histones/metabolism , Diffuse Intrinsic Pontine Glioma/drug therapy , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/pathology , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Histone Deacetylases/genetics , Cell Line, Tumor , Mutation , Microtubules/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...