Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(24): 25870-25878, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911721

ABSTRACT

Porous materials are highly explored platforms for fertilizer delivery. Among porous materials, metal-organic frameworks (MOFs) are an important class of coordination polymers in which metal ions and organic electron donors as linkers are assembled to form crystalline structures with stable nanoporosity. Selected amino acids were inherently found to have the capacity to hold the leaf cuticle. Hence, MOF synthesis was attempted in the presence of amino acids, which can act as surface terminators and can assist as hands to hold to the leaf for a controlled nutrient supply. By serendipity, the amino acids were found to act as modulators, resulting in well-stabilized porous MOF structures with iron metal nodes, which are often noted to be unstable. Thus, the composite, i.e., (MOF@aa) MOF modulated with amino acids, has efficient nutrient-feeding ability through the foliar route when compared to the control.

2.
ACS Appl Mater Interfaces ; 15(34): 40700-40708, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37589680

ABSTRACT

The bottleneck in the rapid development of tin-based perovskite solar cells (TPSCs) is the inherent chemical instability. Although this is being addressed continuously, the device performance has not improved further due to the use of PEDOT:PSS as the hole-transport material (HTM), which has poor long-term stability. Herein we have applied commercial ITO nanoparticles over ITO glass substrates and altered the surface chemistry of the ITO electrode via a simple two-step thermal annealing, followed by a UV-ozone treatment. These surface-modified ITO electrodes display promising interfacial characteristics, such as a suitable band alignment owing to significantly reduced surface carbon contamination, increased In-O bonding, and reduced oxygen vacancies, that enabled fabrication of an HTM-free TPSC device according to a two-step method. The fabricated device possessed an outstanding power conversion efficiency (PCE) of 9.7%, along with a superior long-term stability by retaining over 90% of the initial PCE upon shelf storage in a glovebox for a period of over 10000 h. The application of ITO nanoparticles led to effective interfacial passivation, whose impacts on the long-term durability were assessed using electrochemical impedance spectroscopy, time-resolved photoluminescence decay profiles, and femtosecond transient absorption spectroscopy techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...