Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 91(2): 440-7, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16531469

ABSTRACT

Mutagenic nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been known to arise in the environment through direct emissions from combustion sources and nitration of PAHs, primarily in the atmosphere. Here, we report the formation of nitro-PAH compounds in fish contaminated with PAH and exposed to nitrite (NO2-) in the ambient water. Electrospray ionization mass spectrometric analysis of the bile of the euryhaline fish Oreochromis mossambicus exposed simultaneously to field-relevant, sublethal concentrations of phenanthrene (1 microg/g) and NO2- (1 microM) and collision-induced dissociation of selected ions revealed the presence of two strongly genotoxic nitro-PAH metabolites, namely phenanthrene-6-nitro-1,2-dihydrodiol-3,4-epoxide (mass/charge [m/z] 273) and dihydrodihydroxy acetylamino nitrophenanthrene (m/z 359). These two metabolite peaks present only in the bile of fish exposed simultaneously to phenanthrene and NO2- constituted, respectively, about 3.1 and 2.7% of the highest peak among the putative unconjugated phenanthrene metabolites in the mass spectrum. The presence of the oxidized phenanthrene metabolite dihydroxyphenanthrene (m/z 233) in fish exposed to phenanthrene alone as well as phenanthrene plus NO2- suggested that oxidation of phenanthrene precedes nitration in the sequence of reactions leading to the formation of the observed nitrophenanthrene metabolites. However, the route of PAH administration seems to determine the nature of metabolites formed. Nearly 92% of the hepatic cells of the fish exposed to phenanthrene in the presence of NO2- were found to have suffered extensive DNA fragmentation on comet assay.


Subject(s)
Liver/drug effects , Nitrites/toxicity , Phenanthrenes/toxicity , Tilapia/metabolism , Animals , Bile/chemistry , Comet Assay , DNA Fragmentation , Drug Synergism , Liver/metabolism , Nitrites/pharmacokinetics , Phenanthrenes/pharmacokinetics , Seawater , Spectrometry, Mass, Electrospray Ionization
2.
Environ Pollut ; 143(1): 174-7, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16368175

ABSTRACT

Nitrite (NO(2)(-)), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed the impact of nitrite (NO(2)(-)) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO(2)(-) enhanced the cytochrome P450-dependent biotransformation activity determined as 7-ethoxyresorufin-O-deethylase (EROD), by nearly 36% compared to the value observed in the absence of NO(2)(-) (50.2 +/- 6.74 pmol resorufin min(-1) g(-1) liver). Fixed wavelength fluorescence measurements in bile revealed maximum enhancement to have occurred in the metabolites of benzo[a]pyrene, a carcinogenic PAH. Lasting, sublethal physiological deterioration was apparent in fish exposed simultaneously to an oil refinery effluent and NO(2)(-), from the unremittingly decreasing liver somatic index, even after the withdrawal of the contaminants.


Subject(s)
Carcinogens/metabolism , Liver/metabolism , Nitrites/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Tilapia/metabolism , Water Pollutants, Chemical/toxicity , Agriculture , Animals , Bile/chemistry , Biomarkers/analysis , Biotransformation , Environmental Exposure , Industrial Waste , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...