Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Mol Cancer Res ; 22(7): 625-641, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38588446

ABSTRACT

The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.


Subject(s)
Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion , Proto-Oncogene Protein c-ets-1 , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Sarcoma, Ewing , Tensins , Humans , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Tensins/metabolism , Tensins/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sarcoma, Ewing/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cell Line, Tumor , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Focal Adhesions/genetics , Focal Adhesions/metabolism
2.
Mol Cancer Ther ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657228

ABSTRACT

Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on non-homologous end joining (NHEJ) to repair DNA damage. In this study, we investigated if pharmacological inhibition of the enzyme responsible for NHEJ, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe Additivity Model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single agent TOP2 poisons induced G2M arrest and little apoptotic response, while adding DNA-PKi mediated apoptosis. In vivo, the combination of AZD-7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.

3.
Mol Cell Biol ; 44(3): 103-122, 2024.
Article in English | MEDLINE | ID: mdl-38506112

ABSTRACT

EWSR1 is a member of the FET family of nucleic acid binding proteins that includes FUS and TAF15. Here, we report the systematic analysis of endogenous EWSR1's cellular organization in human cells. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Nucleic Acids , RNA-Binding Protein EWS , Humans , Nucleic Acids/chemistry , Nucleic Acids/metabolism , RNA Polymerase II/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism
4.
bioRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645932

ABSTRACT

We report systematic analysis of endogenous EWSR1's cellular organization. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Interestingly, EWSR1 and FUS, another FET protein, exhibit distinct spatial organizations. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.

5.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187702

ABSTRACT

The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.

6.
J Photochem Photobiol B ; 234: 112506, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35785648

ABSTRACT

The intrinsic complexities of cell-surface glycans impede tracking the metabolic changes in cells. By coupling metabolic glycan labelling (MGL) and surface-enhanced Raman scattering (SERS), we employed the MGL-SERS strategy to elucidate the differential glycosylation pattern in cancer cell lines. Herein, for the first time, we are reporting an N-alkyl derivative of glucosamine (GlcNPhAlk) as a glycan labelling precursor. The extent of labelling was assessed by utilizing Raman imaging and verified by complementary fluorescence and Western blot analysis. MGL-SERS technique was implemented for a comparative evaluation of cell surface glycan imbalance in different cancer cells wherein a linear relationship between glycan expression and metastatic potential was established. Further, the effect of sialyltransferase inhibitor, P-3Fax-Neu5Ac, on metabolic labelling of GlcNPhAlk proved the incorporation of GlcNPhAlk to the terminal glycans through the sialic acid biosynthetic pathway. Hence, this methodology unveils the phenomenon of metastatic progression in cancer cells with inherent glycosylation-related dysplasia.


Subject(s)
Neoplasms , Polysaccharides , Cell Membrane/metabolism , Glycosylation , Humans , Neoplasms/metabolism , Spectrum Analysis, Raman
7.
J Contemp Dent Pract ; 22(11): 1268-1274, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-35343452

ABSTRACT

AIM AND OBJECTIVE: To compare the mucosal thickness, width of attached gingiva, and extent of coverage achieved with the usage of connective tissue graft, platelet-rich fibrin (PRF) membrane and buccally advanced flap along with bone grafts in the closure of immediate implant site. MATERIALS AND METHODS: Twenty-one sites requiring immediate implants were randomly divided into three groups of seven samples each. The techniques comprised bone grafting in jumping space along with either buccally advanced flap (group A), PRF membrane (group B), or connective tissue graft (group C) to cover the socket. In each group, the extent of socket coverage, mucosal phenotype, and width of attached mucosa achieved were assessed after 3 months and intercompared with initial measurements to identify the best technique in achieving primary tissue closure of immediate implant sites. RESULTS: Comparative assessment of gain in attached mucosal width had a remarkable difference in all the groups but exhibited no statistical significance among the groups compared. Also, comparative assessment of mucosal thickness and the extent of socket coverage equally indicated a clinical significance among all groups, but failed to achieve any statistical significance. CONCLUSION: All the three techniques were found to be equally effective in achieving additional width of attached mucosa around implants, coverage of mucosa at osteotomy sites, and a thicker mucosal phenotype at implant sites. In comparison with one another, no single technique was found to be advantageous over the other. CLINICAL SIGNIFICANCE: The commonly used three techniques for socket coverage following the immediate implant placement has been proven to be equally effective. Thus, the selection of the technique to meet the objective of complete closure of an extraction socket along with implant platform is left open to operator skill and operation site, which should consider least traumatic and most feasible technique.


Subject(s)
Dental Implantation, Endosseous , Platelet-Rich Fibrin , Bone Transplantation , Cohort Studies , Dental Implantation, Endosseous/methods , Humans , Tooth Extraction
8.
Mol Carcinog ; 59(12): 1343-1361, 2020 12.
Article in English | MEDLINE | ID: mdl-33043516

ABSTRACT

The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.


Subject(s)
Neoplasms/genetics , Oncogene Proteins/genetics , RNA Interference , Tumor Suppressor Proteins/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Progression , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy
9.
Wiley Interdiscip Rev RNA ; 11(1): e1562, 2020 01.
Article in English | MEDLINE | ID: mdl-31407506

ABSTRACT

Gene fusions are an important class of mutations in several cancer types and include genomic rearrangements that fuse regulatory or coding elements from two different genes. Analysis of the genetics of cancers harboring fusion oncogenes and the proteins they encode have enhanced cancer diagnosis and in some cases patient treatment. However, the effect of the complex structure of fusion genes on the biogenesis of the resulting chimeric transcripts they express is not well studied. There are two potential RNA-related vulnerabilities inherent to fusion-driven cancers: (a) the processing of the fusion precursor messenger RNA (pre-mRNA) to the mature mRNA and (b) the mature mRNA. In this study, we discuss the effects that the genetic organization of fusion oncogenes has on the generation of translatable mature RNAs and the diversity of fusion transcripts expressed in different cancer subtypes, which can fundamentally influence both tumorigenesis and treatment. We also discuss functional genomic approaches that can be utilized to identify proteins that mediate the processing of fusion pre-mRNAs. Furthermore, we assert that an enhanced understanding of fusion transcript biogenesis and the diversity of the chimeric RNAs present in fusion-driven cancers will increase the likelihood of successful application of RNA-based therapies in this class of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.


Subject(s)
Neoplasms/genetics , RNA/genetics , Humans
10.
Oncogene ; 39(10): 2103-2117, 2020 03.
Article in English | MEDLINE | ID: mdl-31804622

ABSTRACT

Rational new strategies are needed to treat tumors resistant to kinase inhibitors. Mechanistic studies of resistance provide fertile ground for development of new approaches. Cancer drug addiction is a paradoxical resistance phenomenon, well-described in MEK-ERK-driven solid tumors, in which drug-target overexpression promotes resistance but a toxic overdose of signaling if the inhibitor is withdrawn. This can permit prolonged control of tumors through intermittent dosing. We and others showed previously that cancer drug addiction arises also in the hematologic malignancy ALK-positive anaplastic large-cell lymphoma (ALCL) resistant to ALK-specific tyrosine kinase inhibitors (TKIs). This is driven by the overexpression of the fusion kinase NPM1-ALK, but the mechanism by which ALK overactivity drives toxicity upon TKI withdrawal remained obscure. Here we reveal the mechanism of ALK-TKI addiction in ALCL. We interrogated the well-described mechanism of MEK/ERK pathway inhibitor addiction in solid tumors and found it does not apply to ALCL. Instead, phosphoproteomics and confirmatory functional studies revealed that the STAT1 overactivation is the key mechanism of ALK-TKI addiction in ALCL. The withdrawal of TKI from addicted tumors in vitro and in vivo leads to overwhelming phospho-STAT1 activation, turning on its tumor-suppressive gene-expression program and turning off STAT3's oncogenic program. Moreover, a novel NPM1-ALK-positive ALCL PDX model showed a significant survival benefit from intermittent compared with continuous TKI dosing. In sum, we reveal for the first time the mechanism of cancer drug addiction in ALK-positive ALCL and the benefit of scheduled intermittent dosing in high-risk patient-derived tumors in vivo.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Drug Resistance, Neoplasm , Lymphoma, Large-Cell, Anaplastic/physiopathology , Protein Kinase Inhibitors/pharmacology , STAT1 Transcription Factor/metabolism , Signal Transduction , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large-Cell, Anaplastic/enzymology , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/metabolism , Nucleophosmin , Protein Kinase Inhibitors/therapeutic use , Proteomics , STAT3 Transcription Factor/genetics
11.
Int J Clin Pediatr Dent ; 12(4): 251-254, 2019.
Article in English | MEDLINE | ID: mdl-31866705

ABSTRACT

The objective of this study was to investigate knowledge, attitude, and practices of dental practitioners in Thiruvananthapuram, India regarding dental management of children with special healthcare needs (CSHCN). MATERIALS AND METHODS: A structured questionnaire was given to 400 dental practitioners. The data were analyzed using SPSS software (version 23.0) and Chi-square test was used. RESULTS: The response rate was 94%. An estimated 73.8% treated children, 66.5% showed willingness to treat CSHCN, and 70.8% had attended CSHCN in their practice. A partial knowledge in dental management of CSHCN was reported by 67.5%. An estimated 36% had undergone training in special care dentistry (SCD) but 45% were not sure whether they can provide dental care with the graduate-level training. Knowledge regarding guidelines for CSHCN was known to 19.5% and that regarding timing of the first dental visit was known to 69% of participants. Tooth extraction (43.1%) and a subsequent caries treatment (39.1%) were the most frequently done procedures, and nonpharmacological management (46.5%) was the mostly used behavior management technique. Among the barriers faced by dentists in treating CSHCN, time consumption (55.6%) and lack of training (55.1%) were commonly enlisted. Further training and improved facilities would motivate the respondents in providing better care to CSHCN. CONCLUSION: This study suggests that majority of the dentists participated had a partial knowledge on SCD and were willing to treat CSHCN. Insufficient training in the field of SCD was a major drawback, which prevented most general dentists from effectively managing CSHCN. Additional training and improving facilities can improve dental care to CSHCN. HOW TO CITE THIS ARTICLE: Rajan S, Kuriakose S, et al. Knowledge, Attitude, and Practices of Dental Practitioners in Thiruvananthapuram on Oral Health Care for Children with Special Needs. Int J Clin Pediatr Dent 2019;12(4):251-254.

13.
J Contemp Dent Pract ; 18(10): 881-886, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28989124

ABSTRACT

AIM: The aim of this study is to compare the shear bond strengths of conventional resin cement and self-adhesive resin cement bonded to lithium disilicate. MATERIALS AND METHODS: A total of 40 extracted human molar teeth were mounted in self-cure acrylic resin. Teeth were prepared to obtain flat occlusal surface. About 40 lithium disilicate specimens of dimension-10 mm in diameter and thickness of 2 mm-were fabricated using lost wax technique. The samples were divided into four groups: Groups I, II, III, and IV (n = 10). The specimens were surface treated with Monobond S silane coupling agent. Self-etching primer and bonding agent were applied on the bonding surface of the teeth in groups I and III. The specimens were bonded to the primed teeth with the Multilink N resin cement and subjected to the universal testing machine. The specimens were light-cured. Specimens in groups II and IV were luted to teeth using self-adhesive cement RelyX U100. The same force was applied over the specimen as mentioned above. Excess cement was removed, and light curing was done. The specimens in groups III and IV were subjected to thermocycling for 10,000 cycles at temperatures altering between 5°C and 55°C. RESULTS: The shear bond strengths of conventional resin cement and self-adhesive resin cement with lithium disilicate were tested before and after thermocycling. Results indicated that thermocycling has no significant effect on the bond strengths of conventional or self-adhesive resin cement. However, from the study, it is seen that conventional resin cement had a higher shear bond strength value than the self-adhesive resin cement. CONCLUSION: There was a significant difference between the average shear bond strength values of conventional resin cement (Multilink N) and self-adhesive resin cement (RelyX U100) when bonded to lithium disilicate disks, and thermocycling had no significant effect on the bond strength of conventional or self-adhesive resin cements. CLINICAL SIGNIFICANCE: Among all-ceramic systems available, lithium disilicate materials have emerged as an excellent esthetic material for fabrication of anterior and posterior crowns and three-unit anterior fixed partial dentures because of their high translucency and improved optical properties. For successful clinical outcomes, the luting agent should have high bond strength not only to the ceramic surface, but also to the tooth surface.


Subject(s)
Dental Bonding/methods , Dental Porcelain , Resin Cements/therapeutic use , Shear Strength/drug effects , Dental Stress Analysis , Humans
14.
Cold Spring Harb Mol Case Stud ; 3(3): a001719, 2017 05.
Article in English | MEDLINE | ID: mdl-28487884

ABSTRACT

Gene-expression profiling and next-generation sequencing have defined diffuse large B-cell lymphoma (DLBCL), the most common lymphoma diagnosis, as a heterogeneous group of subentities. Despite ongoing explosions of data illuminating disparate pathogenic mechanisms, however, the five-drug chemoimmunotherapy combination R-CHOP remains the frontline standard treatment. This has not changed in 15 years, since the anti-CD20 monoclonal antibody rituximab was added to the CHOP backbone, which first entered use in the 1970s. At least a third of patients are not cured by R-CHOP, and relapsed or refractory DLBCL is fatal in ∼90%. Targeted small-molecule inhibitors against distinct molecular pathways activated in different subgroups of DLBCL have so far translated poorly into the clinic, justifying the ongoing reliance on R-CHOP and other long-established chemotherapy-driven combinations. New drugs and improved identification of biomarkers in real time, however, show potential to change the situation eventually, despite some recent setbacks. Here, we review established and putative molecular drivers of DLBCL identified through large-scale genomics, highlighting among other things the care that must be taken when differentiating drivers from passengers, which is influenced by the promiscuity of activation-induced cytidine deaminase. Furthermore, we discuss why, despite having so much genomic data available, it has been difficult to move toward personalized medicine for this umbrella disorder and some steps that may be taken to hasten the process.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Antibodies, Monoclonal, Murine-Derived/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Gene Expression Profiling/methods , Genomics , Humans , Precision Medicine , Prednisone/administration & dosage , Rituximab/administration & dosage , Vincristine/administration & dosage
15.
Article in English | MEDLINE | ID: mdl-27487577

ABSTRACT

Ba1-xFexTiO3 (x=0, 0.005, 0.01) polycrystalline ceramics are prepared using solid state reaction method. Structural studies through XRD, Raman and XPS confirm single tetragonal phase for BaTiO3 whereas a structural disorder tends to intervene with the introduction of smaller Fe ions which reduces the tolerance factor and tetragonality ratio. Grain size of the samples is estimated using SEM micrographs with ImageJ software and chemical composition is confirmed using EDX spectra. Raman spectra measured in the temperature range of 303K to 573K showers light on the structural phase transition exploiting a significant disappearance of the 306cm-1 mode. Further, structural analyses suggest the entry of Fe into the B-site upon increasing its concentration in BaTiO3. The dopant sensitive modes lying at around 640cm-1 and 650cm-1 are assigned to lattice strain. A reduction in ferroelectric to paraelectric transition temperature is observed with a transformation from diffused type to normal ferroelectric upon the increased Fe content. The oxidation state of Fe in the BaTiO3 lattice has been decided using EPR Spectra precisely. Room temperature magnetic ordering is observed in Fe substituted BaTiO3 using PPMS. The coexistence of ferroelectric and magnetic ordering is established in the present study for optimized Fe substituted BaTiO3.

16.
Oncotarget ; 7(17): 23715-29, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27009859

ABSTRACT

The anaplastic lymphoma kinase (ALK) protein drives tumorigenesis in subsets of several tumors through chromosomal rearrangements that express and activate its C-terminal kinase domain. In addition, germline predisposition alleles and acquired mutations are found in the full-length protein in the pediatric tumor neuroblastoma. ALK-specific tyrosine kinase inhibitors (TKIs) have become important new drugs for ALK-driven lung cancer, but acquired resistance via multiple mechanisms including kinase-domain mutations eventually develops, limiting median progression-free survival to less than a year. Here we assess the impact of several kinase-domain mutations that arose during TKI resistance selections of ALK+ anaplastic large-cell lymphoma (ALCL) cell lines. These include novel variants with respect to ALK-fusion cancers, R1192P and T1151M, and with respect to ALCL, F1174L and I1171S. We assess the effects of these mutations on the activity of six clinical inhibitors in independent systems engineered to depend on either the ALCL fusion kinase NPM-ALK or the lung-cancer fusion kinase EML4-ALK. Our results inform treatment strategies with a likelihood of bypassing mutations when detected in resistant patient samples and highlight differences between the effects of particular mutations on the two ALK fusions.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , Mutation , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mutagenesis, Site-Directed , Tumor Cells, Cultured
17.
Biomark Cancer ; 7(Suppl 2): 25-32, 2015.
Article in English | MEDLINE | ID: mdl-26688666

ABSTRACT

Acquired resistance to targeted inhibitors remains a major, and inevitable, obstacle in the treatment of oncogene-addicted cancers. Newer-generation inhibitors may help overcome resistance mutations, and inhibitor combinations can target parallel pathways, but durable benefit to patients remains elusive in most clinical scenarios. Now, recent studies suggest a third approach may be available in some cases-exploitation of oncogene overexpression that may arise to promote resistance. Here, we discuss the importance of maintaining oncogenic signaling at "just-right" levels in cells, with too much signaling, or oncogene overdose, being potentially as detrimental as too little. This is highlighted in particular by recent studies of mutant-BRAF in melanoma and the fusion kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) in anaplastic large cell lymphoma. Oncogene overdose may be exploitable to prolong tumor control through intermittent dosing in some cases, and studies of acute lymphoid leukemias suggest that it may be specifically pharmacologically inducible.

19.
Cancer Res ; 75(14): 2916-27, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26018086

ABSTRACT

The anaplastic lymphoma kinase (ALK) is chromosomally rearranged in a subset of certain cancers, including 2% to 7% of non-small cell lung cancers (NSCLC) and ∼70% of anaplastic large cell lymphomas (ALCL). The ALK kinase inhibitors crizotinib and ceritinib are approved for relapsed ALK(+) NSCLC, but acquired resistance to these drugs limits median progression-free survival on average to ∼10 months. Kinase domain mutations are detectable in 25% to 37% of resistant NSCLC samples, with activation of bypass signaling pathways detected frequently with or without concurrent ALK mutations. Here we report that, in contrast to NSCLC cells, drug-resistant ALCL cells show no evidence of bypassing ALK by activating alternate signaling pathways. Instead, drug resistance selected in this setting reflects upregulation of ALK itself. Notably, in the absence of crizotinib or ceritinib, we found that increased ALK signaling rapidly arrested or killed cells, allowing a prolonged control of drug-resistant tumors in vivo with the administration of discontinuous rather than continuous regimens of drug dosing. Furthermore, even when drug resistance mutations were detected in the kinase domain, overexpression of the mutant ALK was toxic to tumor cells. We confirmed these findings derived from human ALCL cells in murine pro-B cells that were transformed to cytokine independence by ectopic expression of an activated NPM-ALK fusion oncoprotein. In summary, our results show how ALK activation functions as a double-edged sword for tumor cell viability, with potential therapeutic implications.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lymphoma, Large-Cell, Anaplastic/drug therapy , Protein Kinase Inhibitors/administration & dosage , Pyrazoles/administration & dosage , Pyridines/administration & dosage , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Anaplastic Lymphoma Kinase , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Crizotinib , Drug Administration Schedule , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/metabolism , Mice , Mice, SCID , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...