Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 6(1): 235-245, 2020 01 13.
Article in English | MEDLINE | ID: mdl-33463216

ABSTRACT

Silver nanocrystals have been successfully fabricated by the bioreduction route using the ethanolic extract of Azadirachta indica (neem) leaves as the reducing and capping agent without solvent interference. The silver nanocrystals were grown in a single-step method, without the influence of external energy or surfactants, and at room temperature. The nanoparticles were prepared from different ratios of silver ions to reducing agent molecules and were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The nanoparticles were roughly spherical and polydispersed with diameters of less than 40 nm, as determined with high-resolution transmission electron microscopy (HRTEM). Fast Fourier transform (FFT) analysis and X-ray diffraction (XRD) analysis elucidated the crystalline nature of the nanoparticles. The presence of participating functional groups was determined with Fourier transform infrared (FTIR) spectroscopy. The synthesized silver nanoparticles were analyzed as a potential surface-enhanced Raman spectroscopy (SERS) substrate by incorporating rhodamine B as the Raman reporter molecule. The bioreduction process was monitored through SERS fingerprint, which was evaluated by the change in vibrational energies of metal-ligand bonds. It was possible to detect the SERS spectral pattern of the probe molecules on the Ag nanoparticles without the use of any aggregating agent. Thus, the formation of probable intra- and interparticle hot spots was attributed to evaporation-induced aggregation. Furthermore, stirring and precursor salt concentration influenced the kinetics involved in the fabrication process. The thermal stability of the lyophilized nanoparticles prepared from 0.1 M AgNO3 was evaluated with thermogravimetric analysis (TGA) and had a residual mass of 60% at 600 °C. X-ray photoelectron spectroscopy (XPS) studies were used to validate the compositional and chemical-state information. The biomass-capped silver nanoparticles provided antimicrobial activity by inhibiting the growth of Pseudomonas nitroreducens, a biofilm-forming bacterium, and the fungus, Aspergillus unguis (NII 08123).


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Aspergillus , Plant Extracts/pharmacology , Pseudomonas , Silver/pharmacology
2.
Dalton Trans ; 44(11): 5146-52, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25677202

ABSTRACT

A HfSiO4 ceramic was prepared by a conventional solid state synthesis method by sintering at 1600 °C. The morphology of the sintered surface was characterized using scanning electron microscopy and atomic force microscopy and the average surface roughness was about 118 nm. The sintered HfSiO4 ceramic has εr = 7.0, Qu × f = 25 000 and τf = -44 ppm °C(-1) at 10 GHz. It exhibits promising thermal properties such as a low linear thermal expansivity (CTE) of -1.8 ppm °C(-1) (dilatometer) in the temperature range of 30-800 °C and a room temperature thermal conductivity of 11 W m(-1) K(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...