Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(14): 16978-16986, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32212666

ABSTRACT

The present article entails the generation of flexoelectricity during cantilever bending of a solid polymer electrolyte membrane (PEM), composed of poly(ethylene glycol) diacrylate (PEGDA) precursor and ionic liquid (hexylmethylimidazolium hexafluorophosphate). The effects of thiosiloxane modification of PEGDA precursor on glass transition, ionic conductivity, and flexoelectric performance have been explored as a function of PEM composition. The glass transition temperature (Tg) of the PEM declines with increasing thiosiloxane amount in the PEGDA co-network, while the ionic conductivity improves. The PEM/compliant carbonaceous electrodes assemblies were assembled to determine the flexoelectric coefficients by monitoring electrical voltage/current outputs for various PEM compositions under the intermittent square-wave and dynamic oscillatory sine-wave deformation modes. Of particular interest is that the room temperature flexoelectric coefficient exhibits strong frequency dependence in the vicinity of 0.01-10 Hz, suggesting that ion polarization and ion transport through the ion-dipole complexed networks can still be affected by the mobile side chain branches even in the elastic regime of the covalently bonded PEGDA network. The in-depth understanding of the effect of thiosiloxane side chain on flexoelectricity generation is anticipated to have impact on the development of mechanoelectrical energy conversion devices for energy harvesting applications from natural and dynamical environment.

2.
Macromol Rapid Commun ; 41(6): e1900636, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32022395

ABSTRACT

Preparation and low voltage induced bending (converse flexoelectricity) of crosslinked poly(ethylene glycol) diacrylate (PEGDA), modified with thiosiloxane (TS) and ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) (IL) are reported. In between 2µm PEDOT:PSS electrodes at 1 V, it provides durable (95% retention under 5000 cycles) and relatively fast (2 s switching time) actuation with the second largest strain observed so far in ionic electro-active polymers (iEAPs). In between 40 nm gold electrodes under 8 V DC voltage, the film can be completely curled up (270° bending angle) with 6% strain that, to the best of the knowledge, is unpreceded among iEAPs. These results render great potential for the TS/PEGDA/IL based electro-active actuators for soft robotic applications.


Subject(s)
Elastomers/chemistry , Polyethylene Glycols/chemistry , Borates/chemistry , Elastomers/chemical synthesis , Electrodes , Gold/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Ions/chemistry , Robotics/instrumentation , Robotics/methods , Smart Materials/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...