Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3978, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729926

ABSTRACT

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Membrane , Chloride Channels , Golgi Apparatus , Salt Stress , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis/drug effects , Cell Membrane/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Golgi Apparatus/metabolism , Chloride Channels/metabolism , Chloride Channels/genetics , Gene Expression Regulation, Plant , Protein Transport/drug effects , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Plants, Genetically Modified
2.
Front Plant Sci ; 11: 1311, 2020.
Article in English | MEDLINE | ID: mdl-32983201

ABSTRACT

Potassium transporters play an essential role in maintaining cellular ion homeostasis, turgor pressure, and pH, which are critical for adaptation under salt stress. We identified a salt responsive Avicennia officinalis KUP/HAK/KT transporter family gene, AoKUP2, which has high sequence similarity to its Arabidopsis ortholog AtKUP2. These genes were functionally characterized in mutant yeast cells and Arabidopsis plants. Both AoKUP2 and AtKUP2 were induced by salt stress, and AtKUP2 was primarily induced in roots. Subcellular localization revealed that AoKUP2 and AtKUP2 are localized to the plasma membrane and mitochondria. Expression of AtKUP2 and AoKUP2 in Saccharomyces cerevisiae mutant strain (BY4741 trk1Δ::loxP trk2Δ::loxP) helped to rescue the growth defect of the mutant under different NaCl and K+ concentrations. Furthermore, constitutive expression of AoKUP2 and AtKUP2 conferred enhanced salt tolerance in Arabidopsis indicated by higher germination rate, better survival, and increased root and shoot length compared to the untreated controls. Analysis of Na+ and K+ contents in the shoots and roots showed that ectopic expression lines accumulated less Na+ and more K+ than the WT. Two stress-responsive transcription factors, bHLH122 and WRKY33, were identified as direct regulators of AtKUP2 expression. Our results suggest that AtKUP2 plays a key role in enhancing salt stress tolerance by maintaining cellular ion homeostasis.

3.
Plant Cell Rep ; 39(8): 1079-1093, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32382811

ABSTRACT

KEY MESSAGE: A sodium hydrogen exchanger (NHX) gene from the date palm enhances tolerance to salinity in Arabidopsis plants. Plant sodium hydrogen exchangers/antiporters (NHXs) are pivotal regulators of intracellular Na+/K+ and pH homeostasis, which is essential for salt stress adaptation. In this study, a novel orthologue of Na+/H+ antiporter was isolated from date palm (PdNHX6) and functionally characterized in mutant yeast cells and Arabidopsis plants to assess the behavior of the transgenic organisms in response to salinity. Genetically transformed yeast cells with PdNHX6 were sensitive to salt stress when compared to the empty vector (EV) yeast cells. Besides, the acidity value of the vacuoles of the transformant yeast cells has significantly (p ≤ 0.05) increased, as indicated by the calibrated fluorescence intensity measurements and the fluorescence imagining analyses. This observation supports the notion that PdNHX6 might regulate proton pumping into the vacuole, a crucial salt tolerance mechanism in the plants. Consistently, the transient overexpression and subcellular localization revealed the accumulation of PdNHX6 in the tonoplast surrounding the central vacuole of Nicotiana benthamiana leaf epidermal cells. Stable overexpression of PdNHX6 in Arabidopsis plants enhanced tolerance to salt stress and retained significantly higher chlorophyll, water contents, and increased seed germination under salinity when compared to the wild-type plants. Despite the significant increase of Na+, transgenic Arabidopsis lines maintained a balanced Na+/K+ ratio under salt stress conditions. Together, the results obtained from this study imply that PdNHX6 is involved in the salt tolerance mechanism in plants by controlling K+ and pH homeostasis of the vacuoles.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Phoeniceae/genetics , Salt Tolerance , Sodium-Hydrogen Exchangers/genetics , Vacuoles/metabolism , Amino Acid Sequence , Binding Sites , Gene Expression Regulation, Plant , Genome, Plant , Germination/genetics , Homeostasis , Hydrogen-Ion Concentration , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Protein Domains , Protein Sorting Signals , Saccharomyces cerevisiae/metabolism , Salinity , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Stress, Physiological/genetics , Subcellular Fractions/metabolism , Transcription Factors/metabolism , Up-Regulation/genetics
4.
Plant Cell Rep ; 38(10): 1299-1315, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31350571

ABSTRACT

KEY MESSAGE: Expression of AoNHX1 from the mangrove Avicennia increases salt tolerance of rice and Arabidopsis, and specific bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis to mediate the salinity response. Improving crop plants to better tolerate soil salinity is a challenging task. Mangrove trees such as Avicennia officinalis have special adaptations to thrive in high salt conditions, which include subcellular compartmentalization of ions facilitated by specialized ion transporters. We identified and characterized two genes encoding Na+/H+ exchangers AoNHX1 and AoNHX6 from Avicennia. AoNHX1 was present in the tonoplast, while, AoNHX6 was localized to the ER and Golgi. Both NHXs were induced by NaCl treatment, with AoNHX1 showing high expression levels in the leaves and AoNHX6 in the seedling roots. Yeast deletion mutants (ena1-5Δ nha1Δ nhx1Δ and ena1-5Δ nha1Δ vnx1Δ) complemented with AoNHX1 and AoNHX6 showed increased tolerance to both NaCl and KCl. Expression of AoNHX1 and AoNHX6 in the corresponding Arabidopsis mutants conferred enhanced NaCl tolerance. The underlying molecular regulatory mechanism was investigated using AtNHX1 and AtNHX6 in Arabidopsis. We identified two basic helix-loop-helix (bHLH) transcription factors AtMYC2 and AtbHLH122 as the ABA-mediated upstream regulators of AtNHX1 and AtNHX6 by chromatin immunoprecipitation. Furthermore, expression of AtNHX1 and AtNHX6 transcripts was reduced in the atmyc2 and atbhlh122 mutants. Lastly, transgenic rice seedlings harboring pUBI::AoNHX1 showed enhanced salt tolerance, suggesting that this gene can be exploited for developing salt-tolerant crops.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Oryza/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Oryza/drug effects , Oryza/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology
5.
Nanotechnology ; 29(41): 415402, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30004389

ABSTRACT

In this work, we report a one-pot solvothermal strategy to synthesize Co3Fe7 incorporated graphene nanoribbons (Co3Fe7). An improved bi-functional electrocatalytic activity over the traditional electrocatalysts is exhibited by the Co3Fe7/nitrogen-doped graphene nanoribbon (NGNR) composite. For instance, this composite Co3Fe7/NGNRs depicted a lower overpotential of 350 mV than NGNRs (380 mV) and IrO2 (450 mV) to sustain 10 mA cm-2 for an oxygen evolution reaction in 1.0 M KOH. Furthermore, during an oxygen reduction reaction, the catalyst exhibited a four-electron pathway and it is interesting to note that its electrocatalytic behavior is on a par with commercial Pt/C. The enhancement in the electrochemical performance can be attributed to the synergistic effect that stems from the electrocatalytically active nitrogen atoms and metal alloy nanoparticles distributed uniformly over the graphene matrix. This unique composition of electrocatalyst is extremely beneficial for practical applications in fuel cells and metal-air batteries due to its high stability and sustained electrochemical activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...