Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 969, 2019.
Article in English | MEDLINE | ID: mdl-31134017

ABSTRACT

The vast majority of bacteria present in the natural environment are present in the form of aggregates and/or biofilms. Microbial aggregates are ubiquitous in the marine environment and are inhabited by diverse microbial communities which often express intense extracellular enzymatic activities. However, the secretion of an important group of enzymes, DNases, by bacteria from marine aggregates has not been studied, despite the importance of these aggregates in biogeochemical cycling of nutrients in the oceans. In this work, we therefore, employed both culture-based and bioinformatics approaches to understand the diversity of bacterial DNases in marine bacterioplankton. We found that 34% of 345 strains of attached and non-attached marine bacteria showed extracellular DNase activity. Most of these isolates belong to Proteobacteria (53%) and Firmicutes (34%). Secretion of DNases by bacteria isolated from marine gel particles (MGP) is reported here for the first time. Then, to further understand the wider diversity of the potential to produce DNases, sequences were compared using 2316 whole genome and 42 metagenome datasets. Thirty-nine different taxonomic groups corresponding to 10 bacterial phyla were found to encode genes responsible for DNase secretion. This study highlights the unexpected and widespread presence of DNase secretion in bacteria in general and in MGP more specifically. This has important implications for understanding the dynamics and fate of marine microbial aggregates in the oceans.

2.
Bioresour Technol ; 130: 552-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23334010

ABSTRACT

The extracellular nuclease, NucB, from Bacillus licheniformis, can digest extracellular DNA in biofilms, causing biofilm dispersal, and may therefore be used commercially to remove biofilms. However, producing quantities of this secreted peptide is difficult and our aim was therefore to improve its laboratory scale production. This study builds on our understanding of B. licheniformis physiology to enhance NucB production. The addition of manganese, which triggers sporulation and enhances NucB expression, lead to a 5-fold increase in NucB production. Optimisation via Placket-Burman design of experiments identified 3 significant medium components and a subsequent Central Composite Design, to determine the optimum levels of these components, resulted in a 10-fold increase to 471U/ml. The optimal phosphate concentration was less than 0.3mM as this is known to inhibit nuclease production. The use of physiologically relevant information combined with optimisation represents a promising approach to increased enzyme production, which may also be widely applicable.


Subject(s)
Bacillus/physiology , Bacterial Proteins/biosynthesis , Cell Culture Techniques , Deoxyribonucleases/biosynthesis , Bacterial Proteins/metabolism , Biofilms/growth & development , Culture Media , Deoxyribonucleases/metabolism , Manganese/metabolism , Phosphates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...