Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(46): 30932-30941, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34841136

ABSTRACT

Electrochemical studies of resorcinol-based acridinedione (AD) dyes with nonfluorophoric simple amino acids, glycine, alanine, and valine, were carried out in water. AD probes are classified into photoinduced electron transfer (PET) and non-PET-based dyes, wherein the electrochemical properties and photophysical and photochemical behavior vary significantly based on the nature of substituent groups and the nature of the solute. The oxidation potential of PET dye (ADR1) to that of non-PET-based dye (ADR2) differs significantly such that the addition of amino acids results in a shift of the oxidation peak to a less positive potential and the reduction peak to a lesser negative potential. The extent of shift of oxidation and reduction potential in PET dye is more pronounced than that of non-PET dye on the addition of valine rather than glycine. The variation in the shift is attributed to the presence of an electron-donating moiety (OCH3) group in the ninth position of ADR1 dye. Consequently, the quenching of fluorescence is observed in ADR2 with non fluorophoric amino acids that are authenticated by the shift of the anodic and cathodic peaks toward a lesser positive potential. Molecular docking (MD) studies of PET and non-PET dye with amino acids portray that neither hydrophobic interactions nor electrostatic or weak interactions such as van der Waals and pi-pi interactions govern the electrochemical nature of dye on the addition of amino acids. Furthermore, the formation of a conventional hydrogen bond between dye and amino acid is established from MD studies. The existence of dye-water-amino acid competitive hydrogen-bonding interactions is presumably well-oriented throughout the aqueous phase as observed through photophysical studies which support our electrochemical investigation.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 237: 118409, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32361320

ABSTRACT

Photophysical and photochemical investigation of photoinduced electron transfer (PET)-based acridinedione dye (ADR1) with urea in the presence of a nitrogenous base (adenine) were carried out in water. Urea suppresses the PET resulting in a fluorescence enhancement and the extent of binding is correlated and governed by the number of urea molecules surrounding the close vicinity of dye. On the contrary, adenine forms a true 1:2 complex with dye. Presence of adenine in dye-urea microenvironment results in the displacement of dye from the vicinity of urea molecules. The stability of dye-urea network in the presence of adenine reveals that the microenvironment of dye is governed and influenced by both urea and adenine. Introduction of adenine to dye-urea results in the formation of several hydrogen bonding assemblies that are competitive and influences the excited state characteristics of ADR1 dye. The micro assemblies comprise dye-urea (DU), dye-adenine (DA), urea-adenine (UA), urea-water (UW), urea-urea (UU), and adenine-water (AW) framework and the existence of several competitive hydrogen bonding results in a large variation in fluorescence properties of ADR1 dye. The presence of several assemblies also signifies that no confined phase selectively of DU or DA assemblies exist in any stoichiometric proportion in the aqueous phase. The binding constant, the variation in the fluorescence lifetime and its relative amplitude of DA in the presence of urea authenticate that the binding nature of dye-urea-adenine (DUA) is dependent on the several hydrogen bonding assemblies that coexist at any concentration. The extent of hydrogen bonding of DA is found to be entirely different from that of urea. Further, urea resulted in changes in the transient absorption peak of dye with a large variation in lifetime and shift of the transient absorption peaks. Fluorescence spectral techniques are used as an efficient tool in elucidating the binding nature of DU framework in the presence of non-fluorescent hydrogen-bonding solute like adenine.


Subject(s)
Adenine/chemistry , Fluorescent Dyes/chemistry , Urea/chemistry , Electron Transport , Fluorescence , Hydrogen Bonding , Photochemical Processes , Spectrometry, Fluorescence , Water/chemistry
3.
ACS Omega ; 5(1): 751-757, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956825

ABSTRACT

Cyclic voltammetry (CV) studies of 4-dicyanomethylene-2,6-4H-pyran (DDP) dye with alkyl-substituted amides were carried out in an aqueous solution. Formamide and substituted amide interaction with DDP dye were characterized by fluorescence spectral techniques in an aqueous solution, but the electrochemical nature and the interaction at the interface region between dye-amide remains largely unexplored. The introduction of formamide to DDP dye exhibits an increase in the peak current accompanied with potential values gradually shifting more toward a less positive region. A large variation in the current-potential characteristics is observed in alkyl-substituted amides. The cyclic voltammograms of alkyl amides are found to be entirely different from each other. The role of alkyl substitution in the amide molecular framework influences the reduction potential of the dye in an aqueous medium. The mode of interaction of the dye with alkyl-substituted amides is predominantly due to the electrostatic behavior, even though hydrogen-bonding interactions coexist throughout the aqueous phase. The binding constant parameter (K), free-energy changes (ΔG), and the variation in the potential behavior of the dye in the presence of formamide and alkyl amides authenticate that the nature of interaction operates by both hydrogen-bonding mode and electrostatic interactions. Electrochemical techniques when coupled with fluorescence methods provide an efficient method of determining the interaction at the bulk and the interface regions of a water-soluble dye with nonfluorophoric solutes.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117914, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31839572

ABSTRACT

Photophysical and electrochemical techniques were employed to hydrogen-bonding self assemblies forming solutes (Urea, Dimethylurea and Tetramethylurea) in the presence of 4-dicyanomethylene 2, 6-dimethyl-4H-pyran (DDP) dye. Addition of urea derivatives to DDP dye (Intramolecular Charge Transfer (ICT)) results in a fluorescence enhancement accompanied with a significant shift. Fluorescence lifetime behavior exhibits a tri-exponential decay with a large variation in the fluorescence lifetime and relative amplitude distribution. The coexistence of three different fluorescence lifetime components of DDP with urea derivatives signifies the existence of heterogeneous micro environment. The dye is surrounded by varying proportion of solute and water molecules are established from fluorescence lifetime studies. Urea derivatives govern the excited state characteristics of DDP dye resulting in the formation and promotion of different microenvironment which are clearly distinguishable. The existence of multi environment attributed to urea-water structural behaviour is authenticated by electrochemical impedance spectral studies (EIS). A large variation in the contour pattern, shape and intensity in 3D fluorescence contour spectra of dye with urea validate the existence of dye in a heterogeneous micro environment. The hydrophobicity of urea derivatives along with the hydrogen-bonding properties of urea-water and urea-urea influence the photophysical and electrochemical nature of dye is emphasized.

SELECTION OF CITATIONS
SEARCH DETAIL
...