Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11601, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35804004

ABSTRACT

Protected areas are a cornerstone for biodiversity conservation, and typically support more natural and undisturbed habitats compared to unprotected lands. The effect of protected areas on intra-specific ecological niche has been rarely investigated. Here, we explore potential differences in ecological niche properties of birds and mammals across protected and unprotected areas, and relate such differences to species traits. We combine two decades of survey data of birds and mammals from protected and unprotected areas, and apply robust matching to obtain a set of environmentally comparable protected and unprotected sites. Next, we calculate intra-specific niche volume change and habitat shift between protected and unprotected areas, and use generalized linear mixed models to explain these responses with species traits (habitat specialization, body mass, diet, and red list status). The majority of bird and mammal species (83% and 90%, respectively) show different habitat use when occurring within and outside protected areas, with the magnitude of this shift highly varying across species. A minority of species (16% of birds and 10% of mammals) do not change their niche volume nor shift their habitat between protected and unprotected areas. Variation in niche properties is largely unrelated to species traits. Overall, the varying ecological niche responses of birds and mammals to protected areas underscore that there is no universal niche-based response, and that niche responses to land protection are species-specific.


Subject(s)
Birds/physiology , Conservation of Natural Resources , Ecosystem , Mammals/physiology , Animals , Biodiversity , Species Specificity
2.
Glob Chang Biol ; 25(1): 304-313, 2019 01.
Article in English | MEDLINE | ID: mdl-30393928

ABSTRACT

Climate change is driving species to shift their distributions toward high altitudes and latitudes, while habitat loss and fragmentation may hamper species ability to follow their climatic envelope. These two drivers of change may act in synergy, with particularly disastrous impacts on biodiversity. Protected areas, PAs, may thus represent crucial buffers against the compounded effects of climate change and habitat loss. However, large-scale studies assessing the performance of PAs as such buffers remain scarce and are largely based on species occurrence data. Conversely, abundance data have proven to be more reliable for addressing changes in wildlife populations under climate change. We evaluated changes in bird abundance from the 1970s-80s to the 2000s inside and outside PAs at the trailing range edge of 30 northern bird species and at the leading range edge of 70 southern species. Abundances of retracting northern species were higher and declined less inside PAs at their trailing range edge. The positive effect of PAs on bird abundances was particularly marked in northern species that rely strongly on PAs, that is, their density distribution is largely confined within PAs. These species were nearly absent outside PAs in the 2000s. The abundances of southern species were in general lower inside PAs and increased less from the 70s-80s to 2000s. Nonetheless, species with high reliance on PAs had much higher abundances inside than outside PAs in the 2000s. These results show that PAs are essential in mitigating the retraction of northern species, but also facilitate northward expansions of southern species highly reliant on PAs. Our study provides empirical evidence documenting the role of PAs in facilitating species to adjust to rapidly changing climatic conditions, thereby contributing to the mitigation of impending biodiversity loss. PAs may thus allow time for initiating wider conservation programs on currently unprotected land.


Subject(s)
Animal Distribution , Biodiversity , Birds/physiology , Climate Change , Conservation of Natural Resources , Animals , Ecosystem , Finland
3.
PLoS One ; 12(9): e0184792, 2017.
Article in English | MEDLINE | ID: mdl-28950017

ABSTRACT

INTRODUCTION: A main goal of protected areas is to maintain species diversity and the integrity of biological assemblages. Intensifying land use in the matrix surrounding protected areas creates a challenge for biodiversity conservation. Earlier studies have mainly focused on taxonomic diversity within protected areas. However, functional and especially phylogenetic diversities are less studied phenomena, especially with respect to the impacts of the matrix that surrounds protected areas. Phylogenetic diversity refers to the range of evolutionary lineages, the maintenance of which ensures that future evolutionary potential is safeguarded. Functional diversity refers to the range of ecological roles that members of a community perform. For ecosystem functioning and long-term resilience, they are at least as important as taxonomic diversity. AIM: We studied how the characteristics of protected areas and land use intensity in the surrounding matrix affect the diversity of bird communities in protected boreal forests. We used line-transect count and land-cover data from 91 forest reserves in Northern Finland, and land-cover data from buffer zones surrounding these reserves. We studied if habitat diversity and productivity inside protected areas, and intensity of forest management in the matrix have consistent effects on taxonomic, functional and phylogenetic diversities, and community specialization. RESULTS: We found that habitat diversity and productivity inside protected areas have strong effects on all diversity metrics, but matrix effects were inconsistent. The proportion of old forest in the matrix, reflecting low intensity forest management, had positive effects on community specialization. Interestingly, functional diversity increased with increasing logging intensity in the matrix. CONCLUSIONS: Our results indicate that boreal forest reserves are not able to maintain their species composition and abundances if embedded in a severely degraded matrix. Our study also highlights the importance of focusing on different aspects of biodiversity.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Ecosystem
4.
Glob Chang Biol ; 23(6): 2241-2249, 2017 06.
Article in English | MEDLINE | ID: mdl-27685981

ABSTRACT

Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late.


Subject(s)
Biodiversity , Birds , Climate Change , Animals , Climate , Conservation of Natural Resources , Finland , Humans
5.
Biol Lett ; 7(3): 395-8, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21147827

ABSTRACT

Human land-use effects on species populations are minimized in protected areas and population changes can thus be more directly linked with changes in climate. In this study, bird population changes in 96 protected areas in Finland were compared using quantitative bird census data, between two time slices, 1981-1999 and 2000-2009, with the mean time span being 14 years. Bird species were categorized by distribution pattern and migratory strategy. Our results showed that northern bird species had declined by 21 per cent and southern species increased by 29 per cent in boreal protected areas during the study period, alongside a clear rise (0.7-0.8 °C) in mean temperatures. Distribution pattern was the main factor, with migratory strategy interacting in explaining population changes in boreal birds. Migration strategy interacted with distribution pattern so that, among northern birds, densities of both migratory and resident species declined, whereas among southern birds they both increased. The observed decline of northern species and increase in southern species are in line with the predictions of range shifts of these species groups under a warming climate, and suggest that the population dynamics of birds are already changing in natural boreal habitats in association with changing climate.


Subject(s)
Birds , Climate Change , Ecosystem , Animal Migration , Animals , Finland , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...