Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35563276

ABSTRACT

Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Dendritic Cells , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/therapy , Humans , Immune Tolerance , Immunotherapy , T-Lymphocytes, Regulatory
2.
Front Allergy ; 2: 724328, 2021.
Article in English | MEDLINE | ID: mdl-35387037

ABSTRACT

Allergic rhinitis (AR) is characterized by an early-phase response (EPR), and in a subgroup of individuals, a late-phase response (LPR). We sought to investigate polymorphisms in cholinergic synapse pathway genes, previously associated with late-asthmatic responses, in the LPR. Twenty healthy participants and 74 participants with AR underwent allergen exposure using the Environmental Exposure Unit. Allergic participants were sub-phenotyped using self-reported nasal congestion scores; congestion is the predominant symptom experienced during the LPR. Acute congestion (AC, n = 36) participants developed only an EPR, while persistent congestion (PC, n = 38) participants developed both allergic responses. We interrogated blood samples collected before allergen exposure with genotyping and gene expression assays. Twenty-five SNPs located in ADCY3, AKT3, CACNA1S, CHRM3, CHRNB2, GNG4, and KCNQ4 had significantly different allele frequencies (P < 0.10) between PC and AC participants. PC participants had increased minor allele content (P = 0.009) in the 25 SNPs compared to AC participants. Two SNPs in AKT3 were associated with gene expression differences (FDR < 0.01) in PC participants. This study identified an association between the LPR and polymorphisms in the cholinergic synapse pathway genes, and developed a novel method to sub-phenotype AR using self-reported nasal congestion scores.

3.
Asian J Psychiatr ; 54: 102363, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33271685

ABSTRACT

Multiple lines of evidence have suggested a potential role of Neuregulin-1 (NRG1) in the neurodevelopmental pathogenesis of schizophrenia. Interaction between genetic risk variants present within NRG1 locus and non-specific gestational putative insults can significantly impair crucial processes of brain development. Such genetic effects can be analyzed through the assessment of digit ratio and dermatoglyphic patterns. We examined the role of two well-replicated polymorphisms of NRG1 (SNP8NRG221533 and SNP8NRG243177) on schizophrenia risk and its probable impact on the digit ratio and dermatoglyphic measures in patients (N = 221) and healthy controls (N = 200). In schizophrenia patients, but not in healthy controls, a significant association between NRG1 SNP8NRG221533 C/C genotype with lower left 2D:4D ratio, as well as with higher FA_TbcRC and DA_TbcRC. The substantial effect of SNP8NRG221533 on both digit ratio and dermatoglyphic measures suggest a potential role for NRG1 gene variants on neurodevelopmental pathogenesis of schizophrenia.


Subject(s)
Neuregulin-1 , Schizophrenia , Dermatoglyphics , Genotype , Humans , Neuregulin-1/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics
4.
Asian J Psychiatr ; 53: 102193, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32585632

ABSTRACT

OBJECTIVE: Schizophrenia is a complex neuropsychiatric disorder with significant genetic predisposition. In a subset of schizophrenia patients, mitochondrial dysfunction could be explained by the genomic defects like mitochondrial DNA Copy Number Variations, which are considered as a sensitive index of cellular oxidative stress. Given the high energy demands for neuronal functions, altered Mitochondrial DNA copy number (mtDNAcn) and consequent impaired mitochondrial physiology would significantly influence schizophrenia pathogenesis. In this context, we have made an attempt to study mitochondrial dysfunction in schizophrenia by assessing mtDNAcn in antipsychotic-naïve/free schizophrenia patients. METHOD: mtDNAcn was measured in 90 antipsychotic-naïve / free schizophrenia (SCZ) patients and 147 Healthy Controls (HC). The relative mtDNAcn was determined by quantitative real-time polymerase chain reaction (qPCR) using TaqMan® multiplex assay method. RESULT: A statistically significant difference between groups [t = 5.22, P < 0.001] was observed, with significantly lower mtDNAcn in SCZ compared to HC. The group differences persisted even after controlling for age and sex [F (4, 232) = 22.68, P < 0.001, η2 = 0.09]. CONCLUSION: Lower mtDNAcn in SCZ compared to HC suggests that mtDNAcn may hold potential to serve as an important proxy marker of mitochondrial function in antipsychotic-naïve/free SCZ patients.


Subject(s)
DNA Copy Number Variations , Schizophrenia , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Leukocytes/metabolism , Mitochondria/genetics , Schizophrenia/genetics , Schizophrenia/metabolism
5.
ERJ Open Res ; 5(4)2019 Oct.
Article in English | MEDLINE | ID: mdl-31720291

ABSTRACT

Cholinergic synapse pathway gene polymorphisms may play a role in regulating a type of asthmatic airway response triggered upon allergen challenge http://bit.ly/2lJx1VG.

6.
Psychiatry Res Neuroimaging ; 282: 11-17, 2018 12 30.
Article in English | MEDLINE | ID: mdl-30384145

ABSTRACT

Accelerated ageing processes are postulated to underlie schizophrenia pathogenesis. This postulate is supported by observations of reduced telomere length in schizophrenia patients. Hippocampus, one of the most important brain regions implicated in schizophrenia, is shown to atrophy at a faster rate in aging. In this study, telomere length (TL) was measured in 30 antipsychotic-naive/free schizophrenia patients and 60 healthy controls using quantitative PCR assay. Hippocampus volume was measured using voxel-based morphometry. Schizophrenia was associated with differential TL between sexes [Status × Sex; F(1,85) = 5.9, p = 0.017, η2 = 0.065]. Male schizophrenia patients had significantly lower relative TL than female patients [F(1,85) = 7.38, p = 0.008], while such sex difference was not observed in healthy controls [F(1,85) = 0.16, p = 0.69]. Schizophrenia patients showed a significant sex-by-telomere interaction with both right & left hippocampus, with male patients showing positive association of telomere length with volume, while female patients showed negative association. Telomere shortening and the positive association of telomere length with hippocampus volume was observed only in male patients with schizophrenia. Since correlational observations in this cross-sectional study does not necessarily support definitive causal relationship, further longitudinal studies examining hippocampus volume and telomere in schizophrenia patients are needed.


Subject(s)
Antipsychotic Agents , Gray Matter/diagnostic imaging , Hippocampus/diagnostic imaging , Schizophrenia/diagnostic imaging , Telomere Homeostasis , Adult , Cross-Sectional Studies , Female , Gray Matter/physiology , Hippocampus/physiology , Humans , Male , Organ Size , Schizophrenia/blood , Telomere/physiology , Telomere Homeostasis/physiology , Telomere Shortening/physiology , Young Adult
7.
J Neural Transm (Vienna) ; 125(4): 741-748, 2018 04.
Article in English | MEDLINE | ID: mdl-29305655

ABSTRACT

Earlier studies have implicated CHRNA7, coding α-7 nicotinic acetylcholine receptor (α7 nAChR), and its partially duplicated chimeric gene CHRFAM7A in schizophrenia. However, the relationship between the alterations in peripheral gene expression of CHRFAM7A and severity of clinical symptoms has not been examined. Furthermore, potential influence of the antipsychotic medication on CHRFAM7A expression in drug-naive or drug-free schizophrenia is an unexplored area. CHRFAM7A gene expression in lymphocytes was analyzed in 90 antipsychotic-naïve or free schizophrenia patients using TaqMan-based quantitative RT-PCR. Psychotic symptoms were assessed using Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms (SANS). The relationship between psychopathology and CHRFAM7A expression was examined. In addition, measurement of CHRFAM7A gene expression was repeated during follow-up after short-term antipsychotic treatment in 38 patients. There was significant inverse correlation between CHRFAM7A expression and total negative psychopathology score-SANS, and this relationship persisted after accounting for possible confounders such as age, sex and smoking. On exploration of the factor structure of psychopathology using principal component analysis, all the negative symptoms-affective flattening, alogia, apathy, anhedonia and inattention were found to be inversely associated with CHRFAM7A expression. Furthermore, analysis of repeated measures revealed a significant increase in CHRFAM7A expression in patients after short-term administration of antipsychotic medication. Our study observations support the role for CHRFAM7A gene in schizophrenia pathogenesis and suggest a potential novel link between deficient CHRFAM7A expression and negative psychopathology. Furthermore, up-regulation of CHRFAM7A gene expression by antipsychotics suggests that it could be a potential state marker for clinical severity.


Subject(s)
Antipsychotic Agents/therapeutic use , Gene Expression/drug effects , Schizophrenia/drug therapy , Schizophrenia/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics , Adult , Female , Humans , Male
8.
Cytokine ; 107: 59-64, 2018 07.
Article in English | MEDLINE | ID: mdl-29217401

ABSTRACT

Converging evidence suggests important implications of immuno-inflammatory pathway in the risk and progression of schizophrenia. Prenatal infection resulting in maternal immune activation and developmental neuroinflammation reportedly increases the risk of schizophrenia in the offspring by generating pro-inflammatory cytokines including IL-6. However, it is not known how prenatal infection can induce immuno-inflammatory responses despite the presence of immuno-inhibitory Human Leukocyte Antigen-G (HLA-G) molecules. To address this, the present study was aimed at examining the correlation between 14 bp Insertion/Deletion (INDEL) polymorphism of HLA-G and IL-6 gene expression in schizophrenia patients. The 14 bp INDEL polymorphism was studied by PCR amplification/direct sequencing and IL-6 gene expression was quantified by using real-time RT-PCR in 56 schizophrenia patients and 99 healthy controls. We observed significantly low IL6 gene expression in the peripheral mononuclear cells (PBMCs) of schizophrenia patients (t = 3.8, p = .004) compared to the controls. In addition, schizophrenia patients carrying Del/Del genotype of HLA-G 14 bp INDEL exhibited significantly lower IL6 gene expression (t = 3.1; p = .004) than the Del/Ins as well as Ins/Ins carriers. Our findings suggest that presence of "high-expressor" HLA-G 14 bp Del/Del genotype in schizophrenia patients could attenuate IL-6 mediated inflammation in schizophrenia. Based on these findings it can be assumed that HLA-G and cytokine interactions might play an important role in the immunological underpinnings of schizophrenia.


Subject(s)
Genetic Predisposition to Disease/genetics , HLA-G Antigens/genetics , INDEL Mutation , Interleukin-6/genetics , Polymorphism, Genetic , Schizophrenia/genetics , Adolescent , Adult , Female , Gene Expression , Gene Frequency , Genotype , Humans , Interleukin-6/blood , Male , Middle Aged , Schizophrenia/blood , Young Adult
9.
Asian J Psychiatr ; 23: 39-43, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27969076

ABSTRACT

Early life immune aberrations have strongly been associated with the risk of schizophrenia. Amongst them, inflammation induced neurodevelopmental origin has emerged as one of the widely recognized underlying mechanisms. Interleukin-10 (IL-10) is an important anti-inflammatory and immunoregulatory cytokine. It modulates the expression of another immuno-inhibitory molecule, Human Leukocyte Antigen-G (HLA-G), predominantly expressed at the feto-maternal interface. Under physiological conditions, IL-10 and HLA-G molecules regulate the feto-maternal immune homeostasis by limiting the inflammatory states and influence the outcome of pregnancy. The aberrant expression of these molecules can cause pregnancy complications, which are known to confer strong risk to schizophrenia in the offspring. However, there is a considerable lack of information on the effect of the functional interactions between IL-10 and HLA-G on the risk of schizophrenia. We therefore examined the impact of possible correlation between IL-10 genetic variations and the plasma levels of soluble HLA-G (sHLA-G) on schizophrenia risk. Genotyping of IL10 (-592 C>A, -1082 A>G) single nucleotide polymorphisms (SNPs) was performed by PCR-RFLP method in 219 schizophrenia patients and 197 healthy subjects and levels of sHLA-G were estimated by ELISA in 46 patients and 44 healthy subjects. There was no significant difference in the genotype and allele frequencies between the groups for both the IL10 SNPs analyzed. However, we observed a correlation between IL10 genetic variation and plasma levels of sHLA-G in schizophrenia patients. Patients carrying CC genotype of IL10 -592C>A polymorphism had significantly lower sHLA-G levels compared to CA and AA genotypes. Our findings suggest the impact of possible correlation between IL-10 and HLA-G on schizophrenia risk.


Subject(s)
HLA-G Antigens/blood , Interleukin-10/genetics , Schizophrenia/blood , Schizophrenia/genetics , Adult , Female , Humans , Male , Polymorphism, Single Nucleotide , Risk
10.
Hum Immunol ; 77(12): 1166-1171, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27567986

ABSTRACT

The Major Histocompatibility Complex (MHC)/Human Leukocyte Antigen (HLA) is known to influence the pathogenesis of several complex human diseases resulting from gene-environmental interactions. Recently, it has emerged as one of the risk determinants of schizophrenia. The HLA-G protein (a non-classical MHC class I molecule), encoded by the HLA-G gene, is shown to play important role in embryonic development. Importantly, its genetic variations and aberrant expression have been implicated in pregnancy complications like preeclampsia, inflammation, and autoimmunity. Converging evidence implicates these phenomena as risk mechanisms of schizophrenia. However, the functional implications of HLA-G in schizophrenia are yet to be empirically examined. The impact of two functional polymorphisms [14bp Insertion/Deletion (INDEL) and +3187 A>G] and soluble HLA-G (sHLA-G) levels on schizophrenia risk was evaluated. In this exploratory study, the Ins/Ins genotype of 14bp INDEL was found to confer a strong risk for schizophrenia. Further, low levels of sHLA-G were shown to have a significant impact on Clinical Global Impression (CGI) severity in people with schizophrenia.


Subject(s)
3' Untranslated Regions/genetics , HLA-G Antigens/genetics , Schizophrenia/genetics , Adolescent , Adult , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , INDEL Mutation/genetics , Male , Middle Aged , Polymorphism, Genetic , Pregnancy , Risk , Young Adult
11.
Acta Neuropsychiatr ; 28(1): 1-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25877668

ABSTRACT

BACKGROUND AND AIM: Transcranial direct current stimulation (tDCS) is a non-invasive and well-tolerated brain stimulation technique with promising efficacy as an add-on treatment for schizophrenia and for several other psychiatric disorders. tDCS modulates neuroplasticity; psychiatric disorders are established to be associated with neuroplasticity abnormalities. This review presents the summary of research on potential genetic basis of neuroplasticity-modulation mechanism underlying tDCS and its implications for treating various psychiatric disorders. METHOD: A systematic review highlighting the genes involved in neuroplasticity and their role in psychiatric disorders was carried out. The focus was on the established genetic findings of tDCS response relationship with BDNF and COMT gene polymorphisms. RESULT: Synthesis of these preliminary observations suggests the potential influence of neuroplastic genes on tDCS treatment response. These include several animal models, pharmacological studies, mentally ill and healthy human subject trials. CONCLUSION: Taking into account the rapidly unfolding understanding of tDCS and the role of synaptic plasticity disturbances in neuropsychiatric disorders, in-depth evaluation of the mechanism of action pertinent to neuroplasticity modulation with tDCS needs further systematic research. Genes such as NRG1, DISC1, as well as those linked with the glutamatergic receptor in the context of their direct role in the modulation of neuronal signalling related to neuroplasticity aberrations, are leading candidates for future research in this area. Such research studies might potentially unravel observations that might have potential translational implications in psychiatry.


Subject(s)
Mental Disorders/genetics , Mental Disorders/therapy , Neuronal Plasticity/genetics , Transcranial Direct Current Stimulation/methods , Animals , Disease Models, Animal , Genetic Variation , Humans , Neuronal Plasticity/physiology , Polymorphism, Genetic , Polymorphism, Single Nucleotide
12.
Neurosci Biobehav Rev ; 48: 10-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25446950

ABSTRACT

Mitochondria play a critical role in regulating cellular functions including bioenergetics, calcium homeostasis, redox signalling, and apoptotic cell death. Mitochondria are also essential to many aspects of neurodevelopment and neuronal functions. However, mitochondrial impairment may affect bioenergetics in the developing brain and alter critical neuronal processes leading to neurodevelopmental abnormalities. Schizophrenia is a chronic and severe neuropsychiatric disorder of neurodevelopmental origin. Immuno-inflammatory pathway is one of the widely appreciated mechanisms that has consistently been implicated in the neurodevelopmental origin of schizophrenia. However, the source of inflammation and the underlying neurobiological mechanisms leading to schizophrenia are yet to be fully ascertained. Recent understanding reveals that perturbation of mitochondrial network dynamics might lead to various nervous system disorders with inflammatory pathologies. Mitochondrial deficit, altered redox balance and chronic low-grade inflammation are evident in schizophrenia. It is hypothesized that oxidative/nitrosative stress responses due to mitochondrial dysfunctions might activate immuno-inflammatory pathways and subsequently lead to neuroprogressive changes in schizophrenia. Herein, we summarise the current understanding of molecular links between mitochondrial dysfunctions and pathogenesis of schizophrenia based on evidence from genomics, proteomics and imaging studies, which together support a role for mitochondrial impairment in the pathogenetic pathways of schizophrenia.


Subject(s)
Mitochondria/physiology , Schizophrenia/physiopathology , Animals , Brain/drug effects , Brain/growth & development , Brain/physiopathology , Humans , Mitochondria/genetics , Schizophrenia/drug therapy , Schizophrenia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...