Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Dent Res J (Isfahan) ; 13(5): 405-412, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27857765

ABSTRACT

BACKGROUND: To evaluate the effect of Cyclosporin A (CsA) and angiotensin II (Ang II) on cytosolic calcium levels in cultured human gingival fibroblasts (HGFs). MATERIALS AND METHODS: Healthy gingival samples from six volunteers were obtained, and primary HGFs were cultured. Cell viability and proliferation assay were performed to identify the ideal concentrations of CsA and Ang II. Cytosolic calcium levels in cultured gingival fibroblasts treated with CsA and Ang II were studied using colorimetric assay, confocal and fluorescence imaging. Statistical analyses were done using SPSS software and GraphPad Prism. RESULTS: Higher levels of cytosolic levels were evident in cells treated with CsA and Ang II when compared to control group and was statistically significant (P < 0.05) in both colorimetric assay and confocal imaging. Fluorescent images of the cultured HGFs revealed the same. CONCLUSION: Thus calcium being a key player in major cellular functions, plays a major role in the pathogenesis of drug-induced gingival overgrowth.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-169706

ABSTRACT

The success of regeneration attempt is based on an ideal combination of stem cells, scaffolding and growth factors. Tissue constructs help to maintain stem cells in a required area for a desired time. There is a need for easily obtainable cells, potentially autologous stem cells and a biologically acceptable scaffold for use in humans in different difficult situations. This study aims to address these issues utilizing a unique combination of stem cells from gingiva and a hydrogel scaffold, based on a natural product for regenerative application. Human gingival mesenchymal stem cells (HGMSCs) were, with due induction, differentiated to neuronal lineages to overcome the problems associated with birth tissue-related stem cells. The differentiation potential of neuronal lineages was confirmed with suitable specific markers. The properties of mesenchymal stem cells in encapsulated form were observed to be similar to free cells. The encapsulated cells (3D) were then subjected to differentiation into neuronal lineages with suitable inducers, and the morphology and gene expression of transient cells were analyzed. HGMSCs was differentiated into neuronal lineages as both free and encapsulated forms without any significant differences. The presence of Nissl bodies and the neurite outgrowth confirm the differentiation. The advantages of this new combination appear to make it a promising tissue construct for translational application.


Subject(s)
Humans , Gene Expression , Gingiva , Hydrogels , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Neurites , Neurons , Nissl Bodies , Parturition , Regeneration , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...