Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12818, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834602

ABSTRACT

Recent years have seen an increase in research on biodiesel, an environmentally benign and renewable fuel alternative for traditional fossil fuels. Biodiesel might become more cost-effective and competitive with diesel if a solid heterogeneous catalyst is used in its production. One way to make biodiesel more affordable and competitive with diesel is to employ a solid heterogeneous catalyst in its manufacturing. Based on X-ray diffraction (XRD) and Fourier Transform infrared spectroscopy (FTIR), the researchers in this study proved their hypothesis that iron oxide core-shell nanoparticles were generated during the green synthesis of iron-based nanoparticles (FeNPs) from Camellia Sinensis leaves. The fabrication of spherical iron nanoparticles was successfully confirmed using scanning electron microscopy (SEM). As a heterogeneous catalyst, the synthesised catalyst has shown potential in facilitating the conversion of algae oil into biodiesel. With the optimal parameters (0.5 weight percent catalytic load, 1:6 oil-methanol ratio, 60 °C reaction temperature, and 1 h and 30 min reaction duration), a 93.33% yield was attained. This may be due to its acid-base property, chemical stability, stronger metal support interaction. Furthermore, the catalyst was employed for transesterification reactions five times after regeneration with n-hexane washing followed by calcination at 650 °C for 3 h.


Subject(s)
Biofuels , Camellia sinensis , Plant Leaves , Plant Leaves/chemistry , Catalysis , Camellia sinensis/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , X-Ray Diffraction , Esterification , Spectroscopy, Fourier Transform Infrared
2.
Chemosphere ; : 142477, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844107

ABSTRACT

The two main things needed to fulfill the world's impending need for water in the face of the widespread water crisis are collecting water and recycling. To do this, the present study has placed a greater focus on water management strategies used in a variety of contexts areas. To distribute water effectively, save it, and satisfy water quality requirements for a variety of uses, it is imperative to apply intelligent water management mechanisms while keeping in mind the population density index. The present review unveiled the latest trends in water and wastewater recycling, utilizing several Artificial Intelligence (AI) and machine learning (ML) techniques for distribution, rainfall collection, and control of irrigation models. The data collected for these purposes are unique and comes in different forms. An efficient water management system could be developed with the use of AI, Deep Learning (DL), and the Internet of Things (IoT) structure. This study has investigated several water management methodologies using AI, DL and IoT with case studies and sample statistical assessment, to provide an efficient framework for water management.

3.
Environ Geochem Health ; 46(7): 248, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874631

ABSTRACT

All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.


Subject(s)
Acetaldehyde , Pesticides , Water Pollutants, Chemical , Acetaldehyde/analogs & derivatives , Animals , Risk Assessment , Humans , Adsorption , Metal-Organic Frameworks/chemistry
4.
Sci Rep ; 13(1): 5699, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029158

ABSTRACT

Due to the ongoing demand for alternative fuels for CI engines, biodiesel-based research has received support globally. In this study, soapberry seed oil produced by transesterification process to creates biodiesel. It is referred to as BDSS (Biodiesel of Soapberry Seed). According to criteria, the oil qualities are recognized, hence, three different blends and pure diesel were tested in CRDI (Common Rail Direct Injection) engines. The blends descriptions are: 10BDSS (10% BDSS + 90% diesel), 20BDSS (20% BDSS + 80% diesel), and 30BDSS (30% BDSS + 70% diesel). The outcomes of the related tests for combustion, performance, and pollution were contrasted with those achieved using 100% diesel fuel. In this case, the mixing has resulted in worse braking thermal efficiency than diesel and lower residual emissions with greater NOx emissions. The superior results were obtained by 30BDSS, which had BTE of 27.82%, NOx emissions of 1348 ppm, peak pressure of 78.93 bar, heat release rate (HRR) of 61.15 J/deg, emissions of CO (0.81%), HC (11 ppm), and smoke opacity of 15.38%.

5.
Sci Rep ; 13(1): 4798, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959305

ABSTRACT

The purpose of this study is to conduct an experimental assessment of the impact of RCCI (reactivity regulated compression ignition) on the performance, emissions, and combustion of a CRDI engine. A fuel mix (20% biodiesel, 80% diesel, and a NaOH catalyst) is generated. The produced combination is evaluated for attributes using standards established by the American Society for Testing and Materials (ASTM). The engine research included three distinct kinds of injections: 10% Pen RCCI, 20% Pen RCCI, and 30% Pen RCCI. Increasing the injection pressure increases the brake thermal efficiency, often known as BTE. NOx emissions increased as a consequence of higher injection pressures and improved combustion. However, when the injection rate is increased, the Specific Fuel Consumption (SFC) falls. The CO2 and hydrocarbon emissions, as well as the smoke opacity values, increased as the charge increased. The resultant mixture may be utilized in a CI engine with pre-mixed ignition to improve overall engine performance as well as combustion characteristics.

6.
Sci Rep ; 13(1): 5067, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977712

ABSTRACT

Large quantities of vegetable biowaste are generated at marketplaces, usually in highly populated locations. On the other hand, nearby markets, hotels, and street shops generate much cooking oil waste and dispose of them in the sewage. Environmental remediation is mandatory at these places. Hence, this experimental work concentrated on preparing biodiesel using green plant wastes and cooking oil. Biowaste catalysts were produced from vegetable wastes and biofuel generated from waste cooking oil using biowaste catalysts to support diesel demand and Environmental remediation. Other organic plant wastes such as bagasse, papaya stem, banana peduncle and moringa oleifera are used as heterogeneous catalysts of this research work. Initially, the plant wastes are independently considered for the catalyst for biodiesel production; secondary, all plant wastes are mixed to form a single catalyst and used to prepare the biodiesel. In the maximum biodiesel yield analysis, the calcination temperature, reaction temperature, methanol/oil ratio, catalyst loading and mixing speed were considered to control the biodiesel production. The results reveal that the catalyst loading of 4.5 wt% with mixed plant waste catalyst offered a maximum biodiesel yield of 95%.


Subject(s)
Environmental Restoration and Remediation , Vegetables , Plant Oils , Biofuels , Esterification , Catalysis
7.
Environ Res ; 220: 115075, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36566967

ABSTRACT

Biowaste generation is considerably increasing multiple times recently due to various social and environmental changes like population growth, economic prosperity, globalisation etc. they contain different composition and generated at different stages of their life cycle. Though studies reported for recycle, reproduce and reuse of them, this investigation is unique by focussing to investigate the ideal circumstances for the production of biogas and methane from anaerobic digestion of vegetable waste using response surface methods and artificial neural networks with thermophilic temperature range. Thermophilic temperature of 20.78, organic loading rate of 0.2, pH of 8.81, agitation time of 5.8 and hydro retention time of 3 are the ideal input parameter values for the generation of biogas 3.03 m3 and methane% 186.08 with a desirability of 1. The Response surface model was surpassed by the Artificial Neural Network model.


Subject(s)
Biofuels , Methane , Anaerobiosis , Temperature , Neural Networks, Computer , Bioreactors
8.
Environ Res ; 218: 114824, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455635

ABSTRACT

Water treatment is as much important as it is to satisfying 11 worldwide sustainable development goals out of 17. The removal of Azo is much important as they are toxic and their existence in water, air and food can easily affect humans by triggering allergies, forming tumours etc. Azo contained Dyes Production was banned in many countries. This research aims to synthesize composite Nanorods and Nanospheres and characterize and test to remove Azo dyes from the wastewater. This research used a previously reported method to rapidly synthesize chitin magnetite nanocomposites (ChM) by co-precipitation while irradiating with ultrasound (US). Detailed structural characterization of ChM revealed a crystalline phase analogous to magnetite and spherical morphologies; extending the reaction time to 8 min yielded a "nanorod" type morphology. Both the morphologies displayed a nanoscale limit with particles averaging between 5 and 30 nm in size, resulting the superparamagnetic performance and saturation magnetization values between 45 and 58 emu/g. The nitrogen adsorption-desorption isotherms showed that the surface modification of ChMs resulted in a rise of specific surface area and pore size. Anionic azo dyes (methyl orange (MO) and reactive black 5 (RB5)) adsorption on the surface of nanocomposites was also demonstrated to be pH-dependent, with the reaction favoured for surface-modified samples at pH 4 and unmodified samples at pH 8. Adsorption capacity studies showed that molecule size effect and electrostatic attraction were two distinct adsorption processes for unmodified and modified ChMs. Chitin Magnetite nanoparticles appear to be a substitute for traditional anionic dye adsorbents. Additionally, the two key materials sources, chitin, and magnetite are inexpensive and easily accessible.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Humans , Ferrosoferric Oxide , Coloring Agents/chemistry , Chitin , Porosity , Adsorption , Azo Compounds , Magnetic Phenomena , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
9.
Environ Res ; 218: 114984, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36462695

ABSTRACT

Pharmaceuticals are a new developing pollutant that is threatening aquatic ecosystems and impacting numerous species in the ecosystem. The aim of this study is the green synthesis of TiO2-Fe2O3-Chitosan nanocomposites in conjunction with Moringa olifera leaves extract and its applicability for ibuprofen removal. Various characterization studies were performed for the synthesized nanocomposites. Box-Behnken design (BBD) is employed to optimize pH, agitation speed, and composite dosage. Equilibrium results show that adsorption process matches with Langmuir isotherm, demonstrating adsorption on the nanocomposite's homogenous surface and follows pseudo-first-order kinetics. Using the BBD, pH, adsorbent dose, and agitation speed were examined as adsorption parameters. Ibuprofen elimination was demonstrated to be most successful at a pH of 7.3, using 0.05 g of nanocomposites at a rotational speed of 200 rpm. Thermodynamic parameters for ibuprofen sorption were carried out and the ΔH and ΔS was found to be 76.23 & 0.233. Molecular Docking was performed to find the interaction between the pollutant and the nanocomposite. UV-vis spectra confirm the 243 nm absorption band corresponding to the nanocomposite's surface plasmon resonances. Fourier transform infrared spectroscopy spectra relate this band to a group of nanocomposites. The findings of this work emphasize the importance of TiO2-Fe2O3-Chitosan nanocomposites for removing ibuprofen from wastewater.


Subject(s)
Chitosan , Environmental Pollutants , Nanocomposites , Water Pollutants, Chemical , Wastewater , Ibuprofen , Ecosystem , Molecular Docking Simulation , Chitosan/chemistry , Porosity , Hydrogen-Ion Concentration , Thermodynamics , Adsorption , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Kinetics , Water Pollutants, Chemical/analysis
10.
Chemosphere ; 312(Pt 1): 137099, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36372332

ABSTRACT

Pollution of heavy metals is one of the risky contaminations that should be managed for all intents and purposes of general well-being concerns. The bioaccumulation of these heavy metals inside our bodies and pecking orders will influence our people in the future. Bioremediation is a bio-mechanism where residing organic entities use and reuse the squanders that are reused to one more form. This could be accomplished by taking advantage of the property of explicit biomolecules or biomass that is equipped for restricting by concentrating the necessary heavy metal particles. The microorganisms can't obliterate the metal yet can change it into a less harmful substance. In this unique circumstance, this review talks about the sources, poisonousness, impacts, and bioremediation strategies of five heavy metals: lead, mercury, arsenic, chromium, and manganese. The concentrations here are the ordinary strategies for bioremediation such as biosorption methods, the use of microbes, green growth, and organisms, etc. This review demonstrates the toxicity of heavy metal contamination degradation by biotransformation through bacterioremediation and biodegradation through mycoremediation.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Humans , Metals, Heavy/metabolism , Biodegradation, Environmental , Chromium
11.
Environ Res ; 216(Pt 4): 114763, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36356663

ABSTRACT

Phenols are of much toxicological and they must be effectively removed from the wastewater from industries as well as sewage treatment. Such removal demands a special and strong composite. So, this piece of research aims to activate Potassium peroxymonosulfate (PPMS) with the large surface area of magnetite nitrogen-fixed porous carbon nanotube composites (Co/CoOx@NCNT). Increases in the graphitization degree and structural control brought about by the incorporation of reduced Graphite oxide (rGO) significantly increased the catalyst activity of Co/CoOx@NCNT. It was found that PPMS activation for phenol removal by Co/CoOx@NCNT was nearly as effective as by homogeneous Co2+, with nearly 100% removal efficiency in 10 min. Both high reusability and high recycling of Co/CoOx@NCNT were accomplished simultaneously by proving the technology of viability in practical applications. The PPMS activation mechanism in the Co/CoOx@NCNT/PPMS system was driven by the electron transmission from contaminants to PPMS through the sp2- hybrid carbon nanotubes and nitrogen system. The selectivity of the Co/CoOx@NCNT/PPMS system to remove diverse organic compounds was determined by batch experiments. Due to the insignificant impact of radicals reactive on pollutant breakdown, the ability to inhibit species (such as Cl- and natural organic materials) from a minor role was significantly decreased. These results not only shed light on the process of PPMS heterogeneous activation but also provided a framework for the balanced project of highly effective nanocarbon-based catalysts for PPMS activation.


Subject(s)
Nanotubes, Carbon , Wastewater , Phenol , Nanotubes, Carbon/chemistry , Phenols , Nitrogen , Organic Chemicals , Magnetic Phenomena
12.
Chemosphere ; 308(Pt 2): 135950, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36075361

ABSTRACT

Nanomaterials mainly nanocomposites possess unique physical and chemical properties which makes them superior and indispensable. Though much research has been focused on the properties and application of nanocomposites, the eco-toxicity assessment is one among top priority, which aims to protect the population of concerned biological component and their ecosystem. With this objective, the present study has undertaken an initiation to evaluate the efficacy of chitosan-silver nanocomposite for methyl orange adsorption property (CS-AgNC) and also assessed the toxicity impact on growth parameters of freshwater Tilapia. Batch in vitro studies showed that all the tested dosages of the nanocomposite were effectively adsorbing maximum concentration of methyl orange. The synthesized nanocomposite was administrated to the tested fishes followed by the determination of various growth, nutritional parameters, gene expression of enzymatic antioxidants and liver, and intestinal tissues histology. Obtained results indicated that nanocomposite treatment was not projected as a toxic impact on all the tested growth, and nutritional parameters. Histology study showed that the exposure of Tilapia to nanocomposite has not shown any detrimental effect on antioxidants gene expression and liver, intestinal tissue architecture. Hence, all these findings indicated that chitosan-silver nanocomposite prepared in our present system was found to be biocompatible which suggested the possible utilization and release of the nanocomposite into the divergent ecosystem without affecting non-target organisms (NTO).


Subject(s)
Chitosan , Nanocomposites , Tilapia , Adsorption , Animals , Azo Compounds , Chitosan/chemistry , Ecosystem , Fresh Water , Nanocomposites/chemistry , Nanocomposites/toxicity , Silver/chemistry , Silver/toxicity
13.
Chemosphere ; 308(Pt 3): 136530, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36150496

ABSTRACT

Non-steroidal anti-inflammatory medicines (NSAIDs) like paracetamol and other substances released into the water system pose serious environmental issues. The current work examines the synthesis of a nanocomposite combined with Moringa olifera aqueous leaf extract as a reducing and stabilizing agent for the green synthesis of nanocomposites. Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) were used to investigate metal based functional nanocomposites. The absorption band centered at a wavelength of 243 nm, which corresponds to the surface plasmon resonances of the produced nanocomposite, is confirmed in UV-vis spectra. The distinctive band at this particular wavelength is attributed to a particular group of nanocomposites based on the result from the Fourier transform infrared spectroscopy spectra. The spherical with irregularly shaped aggregates was confirmed by transmission electron microscopy, and the average size of nanoparticles was found to be 1 nm. For the elimination of pharmaceutical contaminants such as paracetamol from aqueous solutions, the adsorptive characteristics of nanocomposites were examined. Temperature, pH, adsorbent dosage, and agitation speed were investigated as adsorption parameters using Box-Behnken Design (BBD). The best removal outcomes were found under the following circumstances: temperature at 303.15 K, pH = 7.5, 0.05 g of nanocomposites at 200 rpm. Based on the adsorption study, the kinetics was found to be pseudo first order (R2 > 0.9481) which was validated and fitted by Langmuir isotherm (R2 > 0.9973). The adsorption study confirms that it was adsorbed onto the synthesized nanocomposite and found to be present on the homogeneous surface.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Acetaminophen , Adsorption , Anti-Inflammatory Agents , Anti-Inflammatory Agents, Non-Steroidal , Excipients , Hydrogen-Ion Concentration , Kinetics , Nanocomposites/chemistry , Plant Extracts , Spectroscopy, Fourier Transform Infrared , Wastewater , Water/chemistry , Water Pollutants, Chemical/chemistry
14.
J Environ Manage ; 324: 116265, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36179469

ABSTRACT

Impact of heavy metal (HM) pollution and its understanding on environment as well as human beings has grown a lot during the last few decades. The goal of this study is to create a scientometric study on heavy metal contamination, in the period 1989 to 2020, in order to provide futuristic goals for the new researchers on wastewater treatment. For this, a search was conducted in the Web of Science (WoS) and Scopus databases, related to heavy metal pollution. Totally, 37,154 records were collected during the study period from 1989 to 2020. The findings revealed that China, the United States, and India has most referenced papers across a wide range of trans disciplinary issues such as toxicity, technology, and pollution. As a result, this study concludes that more research on various treatment methods is required in order to obtain high-quality water for consumption and routine activities, with the incorporation of various treatment tasks poses various challenges for the upcoming future studies.


Subject(s)
Environmental Monitoring , Metals, Heavy , Humans , Environmental Monitoring/methods , Metals, Heavy/analysis , Environmental Pollution/analysis , China , India
15.
Chemosphere ; 307(Pt 3): 135773, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35944678

ABSTRACT

This work focuses on the synthesis and characterization of photocatalytic activity of Co-Zn/Al2O3 nanocomposite obtained by calcination of Co-loaded Zn/aluminum layered double hydroxide by wet impregnation method. The catalyst was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), BET and UV-DRS. The evaluation of catalytic activity was investigated for the degradation of emerging pharmaceutical pollutant caffeine in aqueous solutions under UV irradiation. The process parameters were optimized for the maximum removal of caffeine. A maximum caffeine removal of 92% was obtained with the optimal conditions at the catalytic dosage of 0.5 g/L, contact time of 50 min, initial concentration of 50 mg/L, and pH of 9.5. The batch experimental data coincide well with the pseudo first order kinetic model, the rate constant of 0.012 min-1, with the R2 value of 0.875-0.938. The regeneration study reveals that the catalyst has high stability and maximum removal efficiency. Hence, the synthesized nanocatalyst is considered a potential photo catalyst for removing the pharmaceutical pollutant caffeine from aqueous solutions.


Subject(s)
Environmental Pollutants , Nanocomposites , Aluminum , Caffeine , Catalysis , Hydroxides , Nanocomposites/chemistry , Pharmaceutical Preparations , Spectroscopy, Fourier Transform Infrared , Zinc
16.
Chemosphere ; 300: 134600, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427654

ABSTRACT

The current work investigates the conditional influence on Vigna radiate seed germination in vitro and in vivo using the green chemistry approach for the manufacture of titanium dioxide nanoparticles (TiO2 NPs) from seed extract of Trachyspermum ammi (T. ammi). Ultraviolet spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to analyze the TiO2 NPs produced. The crystalline nature of TiO2 NP was revealed by XRD data, and TEM investigation revealed an irregularity in TiO2 NP shape with a size of 17.5 nm. UV absorbance at 315 nm for the TiO2 NPs was observed using Ultraviolet-visible spectrophotometer. The antioxidant potential of the synthesized nanoparticle was discovered to be good. In case of seed germination studies, six concentrations (25, 50 100, 150, 200, and 250 µg mL- 1) of TiO2 NPs were examined along with the control on Vigna radiata seeds. Germination parameters such as seed vigor index (SVI), germination percentage (GP), germination value (GV) root length (RL) and shoot length (SL) of the Vigna radiata seedlings were observed and results revealed that the green synthesized TiO2 NPs were significantly improved. The results indicated that the TiO2 NP affected the plant growth more specifically at lower concentration (50 µg mL-1) of TiO2 NPs. Overall, the findings of this present study stipulated that the green TiO2 NP production can enhance the growth of Vigna radiate under in vitro and in vivo conditions.


Subject(s)
Ammi , Metal Nanoparticles , Vigna , Germination , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds , Spectroscopy, Fourier Transform Infrared , Titanium/chemistry , Titanium/pharmacology , X-Ray Diffraction
17.
Chemosphere ; 300: 134612, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35430203

ABSTRACT

Biosynthesized nanoparticles have sparked a lot of interest as rapidly growing classes of materials for different applications. Plants are considered to be one of the most suitable sources for Green synthesis (GS) as they follow the environment-friendly route of biosynthesis of nanoparticles (NPs). This article focuses on the excavation of Titanium dioxide (TiO2) NP from different parts of plants belonging to a distinct classification of taxonomic groups. During the process of biological synthesis of titanium NPs from plants, the extract derived from plant sources such as from root, stem, leaves, seeds, flowers, and latex possesses phytocompounds that tend to serve as both capping as well as reducing agents. TiO2NP is one of the most commonly used engineered nanomaterials in nanotechnology-based consumer products. This article will provide an overview of the GS and characterization of TiO2NPs from plant extracts of different taxonomic groups. Lastly, this review summarizes the current applications of TiO2NPs.


Subject(s)
Metal Nanoparticles , Nanoparticles , Biomass , Plant Extracts , Plants , Titanium
18.
Chemosphere ; 298: 134121, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35271899

ABSTRACT

Fossil fuel burning is the exclusive of key causes for greenhouse fume Carbon dioxide (CO2). Magnesium nanocomposites synthesized in combination with graphene were characterized and their performance in adsorbing CO2 is validated. The novelty of this work is the use of magnesium oxide decked MG to capture CO2. The magnesium nanocomposites decked with multilayer graphene (MG) were prepared using a simple combustion process. BET surface area of 1480 m2g-1 makes it desirable for adsorbing CO2 molecules. FTIR analysis after adsorption of CO2 shows peak mid position at 3470.45 cm-1, 1300-1000 cm-1, 1603 cm-1, and 1114.30 cm-1 corresponding to the functional groups R-C-O, R-OH, R-COOH, -alkyne, Si-O-Si, and R-C-O-H shifted, signifying that chemisorption has taken place. The effect of many experimental parameters like adsorbent mass, period, and concentration of CO2 was optimized during the experiments. A maximum of 92.2% of CO2 was adsorbed at a concentration of 5 × 10- 4 M at the optimum contact of 70 min. During the experiment, the saturation point was attained at 70 min. Experiment results were best fitting to Langmuir adsorption isotherm; the maximum monolayer adsorption capacity of MG was 7.067 × 10-3 mol/g/min. The kinetics of CO2 on MG was labeled by Pseudo-second-order and R2 value nearly 0.988.


Subject(s)
Environmental Pollutants , Graphite , Nanocomposites , Water Pollutants, Chemical , Adsorption , Carbon Dioxide/analysis , Environmental Pollutants/analysis , Hydrogen-Ion Concentration , Kinetics , Magnesium , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
19.
Environ Res ; 204(Pt B): 112132, 2022 03.
Article in English | MEDLINE | ID: mdl-34571029

ABSTRACT

In this experimental investigation, feasibility and performance of a polymer hybrid bio-nano composite were evaluated to remove malachite green (MG) under controlled environment conditions. The polymer hybrid bio-nanocomposite was characterized using FTIR, SEM and EDS. The influence of operating variables, namely effect of pH (2-11), nanocomposite dosage (20-100 mg), initial MG concentration (10- 200 mg/L), contact time (10-120 min) and temperature (298-318 K) were explored. The maximum removal efficiency (RE) of 99.79% was achieved at neutral pH at the dosage level of 50 mg with the initial MG concentration of 150 mg/L in 40 min. The equilibrium results revealed that the adsorption of MG data fitted to Langmuir isotherm (R2 > 0.970) indicating monolayer adsorption. The maximum adsorption capacity of polymer hybrid nanocomposite was found to be 384.615 mg/g. Kinetic studies were performed using five kinetic models and results showed the pseudo second order model fitted very well with the MG adsorption data (R2 > 0.990). The thermodynamic results confirmed that MG adsorption onto polymer hybrid nanocomposite is feasible and (ΔS ͦ = 0.2893 kJ/mol K), spontaneous (ΔH ͦ = 81.103 kJ/mol K) and exothermic (ΔG ͦ < 0). A mechanism is also proposed for the removal of MG using the polymer nanocomposite and identified that electrostatic attraction and hydrogen bonding as the major mechanism for removal of MG. FTIR results confirmed the presence of carboxyl (-COO) and hydroxyl (-OH) groups which helped in effective binding of cationic dye. The overall results revealed that polymer nanocomposite could be used as a potential adsorbent for removing MG from aqueous solution.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Biomass , Hydrogen-Ion Concentration , Kinetics , Polymers , Rosaniline Dyes , Thermodynamics , Water Pollutants, Chemical/analysis
20.
Chemosphere ; 288(Pt 1): 132405, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34597639

ABSTRACT

In this study, Kaolin clay, a mining material, was used as an abundant and available mineral as zero-valent iron-kaolinite composites for As2O3 removal from the water samples. The composites were made by the sodium borohydrate reduction method. The existence of Fe0 in the produced composites was confirmed by X-ray diffraction (XRD) and Fourier-Transform Infrared Spectroscopy (FTIR) analysis. The membranes are prepared with zerovalent nano Iron-Kaolin and PES. The synthesized composites were then mixed with polyethersulfone to prepare the membranes S1, S2, and S3 with varying compositions. Field Emission Scanning Electron Microscopy (FESEM) analysis of the produced membranes showed the porous structure and the contact angle of membranes increased the hydrophilicity. The membranes were explored for the removal of As2O3 (AsIII) in potable water samples. The filtration studies were carried out using the syringe filtration setup. Analysis of the arsenic (III) solution was carried out, before and after the filtration process using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed a maximum of 50% reduction in its original concentration. The filtered membrane is analyzed for arsenic by Energy Dispersive X-ray (EDX) technique. Thus, the synthesized membrane effectively sieves the arsenic in water samples.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Adsorption , Clay , Iron , Kaolin , Kinetics , Polymers , Sulfones , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...