Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124339, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38696995

ABSTRACT

The FDA (Food and Drug Administration, (USA)) lists ZnO as a material that is widely acknowledged to be safe. ZnO NPs with a range of tiny particle sizes were made using the precipitation process. ZnO nanoparticles' surface is embellished with a tripodal sensor containing naphthol units. The assembly with the same receptor decorated on ZnO NPs is contrasted with the cation detection capabilities of the purified tripodal receptor. The UV-visible spectrophotometric analysis was conducted to study the state transitions of the receptor and the decorated ZnO receptor. A positive selectivity to Al3+ cations is determined by the fluorescence study under ideal circumstances. The particle size and surface morphologies are determined by DLS and SEM analysis for the same receptor - TP1 and embellished with a tripodal receptor TP2. Using a fluorescence switch-on Photoinduced Electron Transfer (PET) mechanism, the receptor coated on ZnO detects the presence of Al3+ ions with specificity. The binding constant value was determined using the B-H plot equation. Binding stoichiometry for [TP1-Al3+, TP2-Al3+] showed a 1:1 ratio. The fluorescence switches ON-OFF process of the ZnO surface adorned - TP2 with Tripodal receptor- TP1 was used to create molecular logic gates, which can function as a module for sensors and molecular switches. The addition of Na2EDTA in the solution of the [TP1; TP2 - Al3+] complex resulted in a noticeable reduction in the emission of fluorescence. This finding offers compelling support for the reversibility of the chemosensor. To enable the practical application of this sensor, we have developed a cassette containing receptors TP1 and TP2. Successfully, it can detect Al3+ metal ions. We performed a comprehensive assessment of the dependability and appropriateness of our approach in measuring the concentration of Al3+ ions in wastewater produced by important industrial procedures.

2.
Food Funct ; 5(10): 2632-45, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25164625

ABSTRACT

Prostate cancer incidence and mortality rates have increased over the past years. The purpose of the present study was to examine the molecular mechanism underlying the chemopreventive effects of quercetin on prostate cancer in an in vivo model. Sprague-Dawley male rats were divided into four groups, Group I: vehicle control (propylene glycol), Group II: chemically induced cancer model (MNU + T); Group III: chemically induced cancer model + quercetin (200 mg per kg b.w.); Group IV: quercetin (200 mg per kg b.w.). Serum levels of quercetin were assessed by high performance liquid chromatography (HPLC). EGFR, PI3K/Akt protein levels were significantly increased in chemically induced cancer rats, which were brought back to normalcy in both DLP & VP (dorsolateral prostate & ventral prostate) by quercetin supplementation. Also, the protein expression levels of proliferating cell nuclear antigen (PCNA), N-cadherin, vimentin, and cyclin D1 exhibited a significant increase in both DLP & VP of chemically induced cancer rats. However, simultaneous quercetin supplementation significantly decreased PCNA, N-cadherin, vimentin, and cyclin D1 protein levels compared to chemically induced cancer rats. The E-cadherin expression was decreased in chemically induced cancer animals. Simultaneous quercetin supplementation prevented it. Real time PCR was used to study the mRNA expression of snail, slug and twist. Quercetin significantly decreased snail, slug, and twist mRNA levels in chemically induced cancer rats. To conclude from the present study, quercetin was effective in preventing prostate cancer progression by inhibiting the EGFR signaling pathway and by regulating cell adhesion molecules in Sprague Dawley rats.


Subject(s)
ErbB Receptors/metabolism , Polyphenols/pharmacology , Prostatic Neoplasms/drug therapy , Quercetin/pharmacology , Signal Transduction , Animals , Anticarcinogenic Agents/pharmacology , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion/drug effects , Chemoprevention/methods , Chromatography, High Pressure Liquid , Cyclin D1/genetics , Cyclin D1/metabolism , Disease Models, Animal , ErbB Receptors/genetics , Male , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Vimentin/genetics , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...