Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Microbiol ; 62(3): 364-373, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35974914

ABSTRACT

Radopholus similis is a burrowing nematode which causes banana toppling disease and is of major economic threat for the banana production. Bacterial endophyte Bacillus velezensis (YEBBR6) produce biomolecules like 5-hydroxy-2-methyl furfural (HMF) and clindamycin in during interaction with Fusarium oxysporum f.sp. cubense. Molecular modelling and docking studies were performed on Radopholus similis protein targets such as calreticulin, cathepsin S-like cysteine proteinase, ß-1,4 -endoglucanase, reticulocalbin, venom allergen-like protein and serine carboxypeptidase to understand the mode of action of HMF and clindamycin against Radopholus similis. Structurally validated protein targets of R. similis were docked with biomolecules through AutoDock Vina module in PyRx 0.8 software to predict the binding energy of ligand and target protein. Among the chosen six targets, docking analysis revealed that clindamycin had the maximum binding affinity for ß-1,4-endoglucanase (- 7.2 kcal/mol), reticulocalbin (- 7.5 kcal/mol) and serine carboxypeptidase (- 6.9 kcal/mol) in comparison with HMF and the nematicide, carbofuran 3G. Besides, clindamycin also had the maximum binding energy for the target sites calreticulin and venom allergen-like protein compared to the small molecule HMF. Novel molecule, clindamycin produced by B. velezensis served as a potential inhibitor of the target sites associated in interrupting the functions of ß-1,4-endoglucanase, reticulocalbin, serine carboxypeptidase, calreticulin, cathepsin S-like cysteine proteinase, and venom allergen-like proteins. Besides, increased binding affinity of clindamycin with the protein target sites facilitated to explore it as a novel nematicidal molecule for the management of banana burrowing nematode R. similis. Thus, present investigation confirmed that, the small molecules clindamycin can be explored for nematicidal activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01011-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...