Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 165: 115078, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37390707

ABSTRACT

Physical exercise has beneficial effects on adult hippocampal neurogenesis (AHN) and cognitive processes, including learning. Although it is not known if anaerobic resistance training and high-intensity interval training, which involve alternating brief bouts of highly intense anaerobic activity with rest periods, have comparable effects on AHN. Also, while less thoroughly investigated, individual genetic diversity in the overall response to physical activity is likely to play a key role in the effects of exercise on AHN. Physical exercise has been shown to improve health on average, although the benefits may vary from person to person, perhaps due to genetic differences. Maximal aerobic capacity and metabolic health may improve significantly with aerobic exercise for some people, while the same amount of training may have little effect on others. This review discusses the AHN's capability for peripheral nervous system (PNS) regeneration and central nervous system (CNS) control via physical exercise. Exercise neurogenicity, effective genes, growth factors, and the neurotrophic factors involved in PNS regeneration and CNS control were discussed. Also, some disorders that could be affected by AHN and physical exercise are summarized.


Subject(s)
Exercise , Neurogenesis , Humans , Adult , Neurogenesis/physiology , Nerve Regeneration , Central Nervous System , Hippocampus/metabolism
2.
Biomed Pharmacother ; 153: 113431, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076549

ABSTRACT

The ultimate goal of regenerative medicine is to repair, regenerate, or reconstruct functional loss in failed tissues and/or organs. Although regenerative medicine is a relatively new field, multiple diverse research groups are helping regenerative medicine reach its objectives. All endeavors in this field go through in silico, in vitro, in vivo, and clinical trials which are prerequisites to translating such approaches from the bench to the bedside. However, despite such promise, there are only a few regenerative medicine approaches that have actually entered commercialization due to extensive demands for the inclusion of multiple rules, principles, and finances, to reach the market. This review covers the commercialization of regenerative medicine, including its progress (or lack thereof), processes, regulatory concerns, and immunological considerations to name just a few key areas. Also, commercially available engineered tissues, including allografts, synthetic substitutes, and 3D bioprinting inks, along with commercially available cell and gene therapeutic products, are reviewed. Clinical applications and future perspectives are stated with a clear road map for improving the regenerative medicine field.


Subject(s)
Bioprinting , Regenerative Medicine , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...