Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(14): 3565-3581, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38832912

ABSTRACT

The field of biomaterials is a continuously evolving interdisciplinary field encompassing biological sciences, materials sciences, chemical sciences, and physical sciences with a multitude of applications realized every year. However, different biomaterials developed for different applications have unique challenges in the form of biological barriers, and addressing these challenges simultaneously is also a challenge. Nevertheless, immense progress has been made through the development of novel materials with minimal adverse effects such as DNA nanostructures, specific synthesis strategies based on supramolecular chemistry, and modulating the shortcomings of existing biomaterials through effective functionalization techniques. This review discusses all these aspects of biomaterials, including the challenges at each level of their development and application, proposed countermeasures for these challenges, and some future directions that may have potential benefits.


Subject(s)
Biocompatible Materials , DNA , Biocompatible Materials/chemistry , Humans , DNA/chemistry , Nanostructures/chemistry , Animals
2.
Cancer Rep (Hoboken) ; 6(11): e1878, 2023 11.
Article in English | MEDLINE | ID: mdl-37530125

ABSTRACT

Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.


Subject(s)
Helicobacter pylori , Microbiota , Stomach Neoplasms , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Stomach Neoplasms/microbiology , Cytotoxins/metabolism
3.
Biotechnol Genet Eng Rev ; : 1-39, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37036043

ABSTRACT

Antimicrobial peptide (AMP), also called host defense peptide, is a part of the innate immune system in eukaryotic organisms. AMPs are also produced by prokaryotes in response to stressful conditions and environmental changes. They have a broad spectrum of activity against both Gram positive and Gram negative bacteria. They are also effective against viruses, fungi, parasites, and cancer cells. AMPs are cationic or amphipathic in nature, but in recent years cationic AMPs have attracted a lot of attention because cationic AMPs can easily interact with negatively charged bacterial and cancer cell membranes through electrostatic interaction. AMPs can also eradicate bacterial biofilms and have broad-spectrum activity against multidrug resistant (MDR) bacteria. Although the main target site for AMPs is the cell membrane, they can also disrupt bacterial cell walls, interfere with protein folding and inhibit enzymatic activity. In recent centuries antibiotics are gradually losing their potential because of the continuous rise of antibiotic resistant bacteria. Therefore, there is an urgent need to develop novel therapeutic approaches to treat MDR bacteria, and AMP is such an alternative treatment option over conventional antibiotics. Several communicable diseases like tuberculosis and non-communicable diseases such as cancer can be treated by using AMPs. One of the major advantages of using AMP is that it works with high specificity and does not cause any harm to normal tissue. AMPs can be modified to improve their efficacy. In this narrative review, we are focusing on the potential application of AMPs in medical science.

SELECTION OF CITATIONS
SEARCH DETAIL
...