Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 13: 918-943, 2022.
Article in English | MEDLINE | ID: mdl-35937500

ABSTRACT

We propose a hypothesis of a mechanism linking cellular aging to cellular quiescence in chronologically aging budding yeast. Our hypothesis posits that this mechanism integrates four different processes, all of which are initiated after yeast cells cultured in a medium initially containing glucose consume it. Quiescent cells that develop in these cultures can be separated into the high- and low-density sub-populations of different buoyant densities. Process 1 of the proposed mechanism consists of a cell-cycle arrest in the G1 phase and leads to the formation of high-density quiescent cells. Process 2 results in converting high-density quiescent cells into low-density quiescent cells. Processes 3 and 4 cause a fast or slow decline in the quiescence of low- or high-density quiescent cells, respectively. Here, we tested our hypothesis by assessing how four different geroprotectors influence the four processes that could link cellular aging to cellular quiescence. We found that these geroprotectors differently affect processes 1 and 2 and decelerate processes 3 and 4. We also found that a rise in trehalose within quiescent yeast contributes to chronological aging and quiescence maintenance. These data collectively provide conclusive evidence for a mechanistic link between cellular aging and cellular quiescence.


Subject(s)
Saccharomyces cerevisiae , Saccharomycetales , Cellular Senescence , Glucose , Humans , Senotherapeutics , Trehalose
2.
Oncotarget ; 8(41): 69328-69350, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-29050207

ABSTRACT

A yeast culture grown in a nutrient-rich medium initially containing 2% glucose is not limited in calorie supply. When yeast cells cultured in this medium consume glucose, they undergo cell cycle arrest at a checkpoint in late G1 and differentiate into quiescent and non-quiescent cell populations. Studies of such differentiation have provided insights into mechanisms of yeast chronological aging under conditions of excessive calorie intake. Caloric restriction is an aging-delaying dietary intervention. Here, we assessed how caloric restriction influences the differentiation of chronologically aging yeast cultures into quiescent and non-quiescent cells, and how it affects their properties. We found that caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of quiescence, entry into a non-quiescent state and survival in this state. Our findings suggest that caloric restriction delays yeast chronological aging by causing specific changes in the following: 1) a checkpoint in G1 for cell cycle arrest and entry into a quiescent state; 2) a growth phase in which high-density quiescent cells are committed to become low-density quiescent cells; 3) the differentiation of low-density quiescent cells into low-density non-quiescent cells; and 4) the conversion of high-density quiescent cells into high-density non-quiescent cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...