Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(11): e08371, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34825085

ABSTRACT

Glioblastoma (GBM) is the most lethal primary brain tumour with a median survival of only 15 months. We have previously demonstrated the generation of an in vitro therapy resistance model that captures the residual resistant (RR) disease cells of GBM post-radiation. We also reported the proteomic landscape of parent, residual, and relapse cells using iTRAQ based quantitative proteomics of glioma cells. The proteomics data revealed significant up-regulation (fold change >1.5) of 14-3-3ζ, specifically in GBM RR cells. This was further confirmed by western blots in residual cells generated from GBM cell lines and patient sample-derived short-term primary culture. ShRNA-mediated knockdown of 14-3-3ζ radio-sensitized GBM cells and further stimulated therapy-induced senescence (TIS) and multinucleated giant cells (MNGCs) phenotype in RR cells. Intriguingly, 14-3-3ζ knockdown residual cells also showed a significantly higher number of mitochondria and increased mtDNA content. Indeed, in vitro GST pull-down mass spectrometry analysis of GST tagged 14-3-3ζ from RR cells identified novel interacting partners of 14-3-3ζ involved in cellular metabolism. Taken together, here we identified novel interacting partners of 14-3-3ζ and proposed an unconventional function of 14-3-3ζ as a negative regulator of TIS and mitochondrial biogenesis in residual resistant cells and loss of which also radio-sensitize GBM cells.

2.
J Cell Sci ; 134(6)2021 03 26.
Article in English | MEDLINE | ID: mdl-33526713

ABSTRACT

Senescence is the arrest of cell proliferation and is a tumor suppressor phenomenon. In a previous study, we have shown that therapy-induced senescence of glioblastoma multiforme (GBM) cells can prevent relapse of GBM tumors. Here, we demonstrate that ciprofloxacin-induced senescence in glioma-derived cell lines and primary glioma cultures is defined by SA-ß-gal positivity, a senescence-associated secretory phenotype (SASP), a giant cell (GC) phenotype, increased levels of reactive oxygen species (ROS), γ-H2AX and a senescence-associated gene expression signature, and has three stages of senescence -initiation, pseudo-senescence and permanent senescence. Ciprofloxacin withdrawal during initiation and pseudo-senescence reinitiated proliferation in vitro and tumor formation in vivo Importantly, prolonged treatment with ciprofloxacin induced permanent senescence that failed to reverse following ciprofloxacin withdrawal. RNA-seq revealed downregulation of the p65 (RELA) transcription network, as well as incremental expression of SMAD pathway genes from initiation to permanent senescence. Ciprofloxacin withdrawal during initiation and pseudo-senescence, but not permanent senescence, increased the nuclear localization of p65 and escape from ciprofloxacin-induced senescence. By contrast, permanently senescent cells showed loss of nuclear p65 and increased apoptosis. Pharmacological inhibition or genetic knockdown of p65 upheld senescence in vitro and inhibited tumor formation in vivo Our study demonstrates that levels of nuclear p65 define the window of reversibility of therapy-induced senescence and that permanent senescence can be induced in GBM cells when the use of senotherapeutics is coupled with p65 inhibitors.


Subject(s)
Glioblastoma , Glioma , Cell Nucleus , Cell Proliferation , Cellular Senescence , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans
3.
Neuro Oncol ; 22(12): 1785-1796, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32458986

ABSTRACT

BACKGROUND: Residual disease of glioblastoma (GBM) causes recurrence. However, targeting residual cells has failed, due to their inaccessibility and our lack of understanding of their survival mechanisms to radiation therapy. Here we deciphered a residual cell-specific survival mechanism essential for GBM relapse. METHODS: Therapy resistant residual (RR) cells were captured from primary patient samples and cell line models mimicking clinical scenario of radiation resistance. Molecular signaling of resistance in RR cells was identified using RNA sequencing, genetic and pharmacological perturbations, overexpression systems, and molecular and biochemical assays. Findings were validated in patient samples and an orthotopic mouse model. RESULTS: RR cells form more aggressive tumors than the parental cells in an orthotopic mouse model. Upon radiation-induced damage, RR cells preferentially activated a nonhomologous end joining (NHEJ) repair pathway, upregulating Ku80 and Artemis while downregulating meiotic recombination 11 (Mre11) at protein but not RNA levels. Mechanistically, RR cells upregulate the Su(var)3-9/enhancer-of-zeste/trithorax (SET) domain and mariner transposase fusion gene (SETMAR), mediating high levels of H3K36me2 and global euchromatization. High H3K36me2 leads to efficiently recruiting NHEJ proteins. Conditional knockdown of SETMAR in RR cells induced irreversible senescence partly mediated by reduced H3K36me2. RR cells expressing mutant H3K36A could not retain Ku80 at double-strand breaks, thus compromising NHEJ repair, leading to apoptosis and abrogation of tumorigenicity in vitro and in vivo. Pharmacological inhibition of the NHEJ pathway phenocopied H3K36 mutation effect, confirming dependency of RR cells on the NHEJ pathway for their survival. CONCLUSIONS: We demonstrate that the SETMAR-NHEJ regulatory axis is essential for the survival of clinically relevant radiation RR cells, abrogation of which prevents recurrence in GBM.


Subject(s)
Glioblastoma , Animals , DNA Repair , Glioblastoma/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Mutation , Neoplasm Recurrence, Local/genetics
4.
Breast Cancer Res Treat ; 181(1): 225-231, 2020 May.
Article in English | MEDLINE | ID: mdl-32236825

ABSTRACT

BACKGROUND: HER-(human epidermal growth factor receptor 2) gene amplification and protein overexpression are important predictive, prognosis markers, and therapeutic target for breast cancer, emphasizing the importance of categorizing patients into HER2 positive and negative. However, from immunohistochemistry scores, 2% patients are neither HER2 + nor -ve, but borderline called HER2B. To make informed treatment decisions of these patients, it is important to know how different this group is compared to HER-2 positive/negative. METHODS: We analyzed n = 104,668 breast cancer patient samples from Surveillance, Epidemiology, and End Results (SEER) database. Survival analysis was performed using open source R (Cran project R version 3.5.0) "survival" package. Hazard ratio with confidence intervals was computed using coxph function. RESULTS: Of n = 104,668, 2239 (2.13%) patients were HER2 borderline, 87,157 (83.26%) HER2-negative, and 15,272 (14.6%) HER2-positive. The breast cancer as primary malignancy was observed in 84,944 (81.16%) patients. In primary malignant breast cancer (PMBC) patients, the hazard ratio among HER2-negative patients was significantly higher than HER2-positive patient samples (HR = 0.772, 95% CI 0.715-0.833, p = < .001), whereas HER2 negative status was not significantly favorable in PMBC negative patients in HER2-positive (HR = .919, 95% 0.797-1.06, p = .248). Most importantly in PMBC patients, the HR for HER2-borderline was poor in comparison to HER2 negative (HR = 1.354, 95% CI 1.126-1.627, p = < .001). CONCLUSION: This is the first report with large cohort of patient samples and significant statistical power to demonstrate that HER2 borderline represents a negative prognostic factor for PMBC. Thus providing rationale for controlled clinical trial for HER2-targeted therapies in HER2-borderline patients.


Subject(s)
Breast Neoplasms/mortality , Gene Amplification , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Follow-Up Studies , Humans , Immunohistochemistry , Middle Aged , Prognosis , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Survival Rate
5.
AAPS PharmSciTech ; 21(1): 24, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31845106

ABSTRACT

Conjugation of D-glucosamine with lipophilic moiety can ease its application in surface modification of liposomes. Interestingly, although D-glucosamine is safe, studies have shed light on "toxic effect" of its conjugates on cancer cells and highlighted its application in targeting glioma. However, understanding the safety of such conjugates for local delivery to the brain is unavailable. Herein, after successful synthesis of D-glucosamine conjugate (GC), the toxicity of functionalized liposome was evaluated both in vitro and in vivo. The study revealed a significant effect on cytotoxicity and apoptosis in vitro as assessed on grade IV-resistant glioma cell lines, SF268, U87MG, using MTT assay and PI staining. Additionally, this effect was not observed on normal human erythrocytes in the hemolysis assay. Furthermore, we demonstrated that GC liposomes were non-toxic to the normal brain tissues of healthy Sprague-Dawley rats. Successful functionalization yielded liposome with uniform particle size, stability, and cellular uptake. With < 10% hemolysis, all the liposomal formulations demonstrated hemato-compatibility but led to high glioma cytotoxicity. The surface density of conjugate played an important role in tumor toxicity (0.5 < 1.0 ≤ 2.0% molar ratio). PI staining revealed that compared to control cell, functionalization led 26-fold increase in induction of apoptosis in glioma cells. Absence of histological and behavioral changes along with the absence of caspase-3 in brain tissue confirmed the suitability of the system for direct infusion in the brain. Thus, this study will aid the future development of clinically useful local chemotherapeutic without "add-in" side effects.


Subject(s)
Brain/metabolism , Glucosamine/administration & dosage , Liposomes , Animals , Apoptosis/drug effects , Cell Line, Tumor , Drug Delivery Systems , Glucosamine/chemistry , Humans , Male , Particle Size , Rats , Rats, Sprague-Dawley
6.
Oncotarget ; 9(45): 27667-27681, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29963228

ABSTRACT

Therapy resistance and recurrence in Glioblastoma is due to the presence of residual radiation resistant cells. However, because of their inaccessibility from patient biopsies, the molecular mechanisms driving their survival remain unexplored. Residual Radiation Resistant (RR) and Relapse (R) cells were captured using cellular radiation resistant model generated from patient derived primary cultures and cell lines. iTRAQ based quantitative proteomics was performed to identify pathways unique to RR cells followed by in vitro and in vivo experiments showing their role in radio-resistance. 2720 proteins were identified across Parent (P), RR and R population with 824 and 874 differential proteins in RR and R cells. Unsupervised clustering showed proteasome pathway as the most significantly deregulated pathway in RR cells. Concordantly, the RR cells displayed enhanced expression and activity of proteasome subunits, which triggered NFkB signalling. Pharmacological inhibition of proteasome activity led to impeded NFkB transcriptional activity, radio-sensitization of RR cells in vitro, and significantly reduced capacity to form orthotopic tumours in vivo. We demonstrate that combination of proteasome inhibitor with radio-therapy abolish the inaccessible residual resistant cells thereby preventing GBM recurrence. Furthermore, we identified first proteomic signature of RR cells that can be exploited for GBM therapeutics.

7.
Sci Rep ; 6: 26538, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27221528

ABSTRACT

An inability to discern resistant cells from bulk tumour cell population contributes to poor prognosis in Glioblastoma. Here, we compared parent and recurrent cells generated from patient derived primary cultures and cell lines to identify their unique molecular hallmarks. Although morphologically similar, parent and recurrent cells from different samples showed variable biological properties like proliferation and radiation resistance. However, total RNA-sequencing revealed transcriptional landscape unique to parent and recurrent populations. These data suggest that global molecular differences but not individual biological phenotype could differentiate parent and recurrent cells. We demonstrate that Raman Spectroscopy a label-free, non-invasive technique, yields global information about biochemical milieu of recurrent and parent cells thus, classifying them into distinct clusters based on Principal-Component-Analysis and Principal-Component-Linear-Discriminant-Analysis. Additionally, higher lipid related spectral peaks were observed in recurrent population. Importantly, Raman spectroscopic analysis could further classify an independent set of naïve primary glioblastoma tumour tissues into non-responder and responder groups. Interestingly, spectral features from the non-responder patient samples show a considerable overlap with the in-vitro generated recurrent cells suggesting their similar biological behaviour. This feasibility study necessitates analysis of a larger cohort of naïve primary glioblastoma samples to fully envisage clinical utility of Raman spectroscopy in predicting therapeutic response.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Humans
8.
Carcinogenesis ; 36(6): 685-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25863126

ABSTRACT

Understanding of molecular events underlying resistance and relapse in glioblastoma (GBM) is hampered due to lack of accessibility to resistant cells from patients undergone therapy. Therefore, we mimicked clinical scenario in an in vitro cellular model developed from five GBM grade IV primary patient samples and two cell lines. We show that upon exposure to lethal dose of radiation, a subpopulation of GBM cells, innately resistant to radiation, survive and transiently arrest in G2/M phase via inhibitory pCdk1(Y15). Although arrested, these cells show multinucleated and giant cell phenotype (MNGC). Significantly, we demonstrate that these MNGCs are not pre-existing giant cells from parent population but formed via radiation-induced homotypic cell fusions among resistant cells. Furthermore, cell fusions induce senescence, high expression of senescence-associated secretory proteins (SASPs) and activation of pro-survival signals (pAKT, BIRC3 and Bcl-xL) in MNGCs. Importantly, following transient non-proliferation, MNGCs escape senescence and despite having multiple spindle poles during mitosis, they overcome mitotic catastrophe to undergo normal cytokinesis forming mononucleated relapse population. This is the first report showing radiation-induced homotypic cell fusions as novel non-genetic mechanism in radiation-resistant cells to sustain survival. These data also underscore the importance of non-proliferative phase in resistant glioma cells. Accordingly, we show that pushing resistant cells into premature mitosis by Wee1 kinase inhibitor prevents pCdk1(Y15)-mediated cell cycle arrest and relapse. Taken together, our data provide novel molecular insights into a multistep process of radiation survival and relapse in GBM that can be exploited for therapeutic interventions.


Subject(s)
Brain Neoplasms/genetics , Cell Proliferation/genetics , Glioblastoma/genetics , Radiation Tolerance/genetics , Apoptosis/genetics , Baculoviral IAP Repeat-Containing 3 Protein , CDC2 Protein Kinase , Cell Cycle Proteins , Cell Fusion , Cell Line, Tumor , Cellular Senescence/genetics , Cyclin-Dependent Kinases , Giant Cells/radiation effects , Humans , Inhibitor of Apoptosis Proteins/metabolism , M Phase Cell Cycle Checkpoints/radiation effects , Mitosis/genetics , Mitosis/radiation effects , Neoplasm Recurrence, Local/genetics , Nuclear Proteins , Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitin-Protein Ligases/metabolism , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...