Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Luminescence ; 37(4): 558-568, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34967114

ABSTRACT

Here, we report a hydrothermally treated green leaves (Moringa oleifera) extract exploited as an efficient and highly sensitive catalyst to catalyze the chemiluminescence (CL) reaction of luminol. In the absence of enhancer, this green and hydrothermally treated catalyst was found to significantly enhance the CL intensity ~3.5-fold compared with the traditionally used K3 Fe(CN)6 catalyst. The structure and surface morphology of the catalyst was elucidated using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. The synergistic effect of the catalyst in the CL reaction was systematically investigated in the presence of hydrogen peroxide using ultraviolet-visible and CL spectroscopy. Studies showed that the sensitivity of the catalyst could be amplified by adjusting several parameters such as pH of the medium and concentrations of the base and luminol. The sensitivity of the novel-type catalyst was examined through the validation of hydrogen peroxide levels in commercial hair dye samples. Markedly, the catalyst displayed ultrasensitivity to hydrogen peroxide as the limit of detection of hydrogen peroxide using this catalyst was determined to be 0.02 µM under optimized conditions. In general, the proposed inexpensive, ecofriendly, and nontoxic catalyst could enable the determination of hydrogen peroxide for diverse analytical applications.


Subject(s)
Hair Dyes , Luminol , Hydrogen Peroxide/chemistry , Limit of Detection , Luminescence , Luminescent Measurements/methods , Luminol/chemistry , Peroxides
2.
J Environ Manage ; 244: 257-264, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31125876

ABSTRACT

Owing to the widespread occurrence and potential health effects, many treatment strategies have been developed across the world to remove the heavy metal contaminants in water. Developing affordable and sustainable nanoscale materials are the prime factors for the success of such treatment systems in the field. The present study explores the use of desiccant waste, exhausted after several cycles of dehumidification processes. The granulated composite desiccant is composed of boehmite nanoparticles reinforced with chitosan fibrils. The composite was synthesized via a simple and scalable one-pot sol-gel route at atmospheric pressure and room temperature. The desiccant was employed for dehumidification/regeneration cycles. The reuse potential of exhausted desiccant towards enhanced removal of metal ions was analyzed and demonstrated. After adsorption the nanocomposite was characterized to establish its chemical composition and structure. Batch and fixed-bed column adsorption experiments were performed to evaluate the removal efficiency of the nanocomposite and to assess the parameters that influence the adsorption process. The experimental evidences confirm the fast kinetics of adsorption/desorption and effective regeneration of the composite. The enhanced removal capacity, excellent reuse potential, high stable granules, eco-friendly synthesis approach makes the adsorbent an excellent candidate for the removal of wide range of heavy metals in water.


Subject(s)
Chitosan , Metals, Heavy , Water Pollutants, Chemical , Water Purification , Adsorption , Aluminum Hydroxide , Aluminum Oxide , Hygroscopic Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...