Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Chem Toxicol ; : 1-11, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039826

ABSTRACT

Iron oxide nanoparticles (Fe3O4 NPs) have gained considerable attention due to their diverse applications in various fields. However, concerns about their potential toxic effects on the environment and living organisms have also emerged. In this study, we synthesized and characterized Fe3O4 NPs and assessed their immunotoxicity on the coelomocytes of Eisenia fetida. The Fe3O4 NPs were synthesized using a co-precipitation method, and their physicochemical properties were determined using techniques such as X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The synthesized Fe3O4 NPs exhibited a uniform size distribution with spherical morphology and the phase purity was confirmed from XRD analysis. To evaluate the immunotoxicity of Fe3O4 NPs, Eisenia fetida coelomocytes were exposed to various concentrations of Fe3O4 NPs for 14 days. Furthermore, we analyzed the impact of Fe3O4 NPs on the biochemical parameters, including superoxide dismutase (SOD), catalase (CAT), acid phosphatase (APs), alkaline phosphatase (ALP), and total protein content (TPC), as well as conducted a histological examination. Biochemical analysis revealed significant alterations in the activity levels of SOD, CAT, APs, ALP, and TPC in the coelomocytes, indicating immune system dysregulation upon exposure to Fe3O4 NPs. Moreover, histological examination demonstrated structural changes, suggesting cellular damage caused by Fe3O4 NPs. These findings provide valuable insights into the immunotoxic effects of Fe3O4 NPs on Eisenia fetida and underscore the need for further investigation into the potential environmental impact of nanoparticles.

2.
Chemistry ; : e202402086, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865099

ABSTRACT

A multi-stimuli responsive tetraphenyl substituted tripehnylamine-based aggregation induced emissive (AIE) material coupled with spiropyran was prepared. Owing to the presence of AIE and photochromic moiety, the molecule exhibits emissive aggregates, photochromism, and acidochromism. The multiple stimuli sensitive behavior of the molecule was explored for anti-counterfeiting behavior on TLC plate and commercial banknotes. The fluorogenic and photogenic response under UV and visible light established the potential of the candidate as a new generation encryption material.

SELECTION OF CITATIONS
SEARCH DETAIL
...