Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 13(1): 47, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320987

ABSTRACT

Rydberg excitons (analogues of Rydberg atoms in condensed matter systems) are highly excited bound electron-hole states with large Bohr radii. The interaction between them as well as exciton coupling to light may lead to strong optical nonlinearity, with applications in sensing and quantum information processing. Here, we achieve strong effective photon-photon interactions (Kerr-like optical nonlinearity) via the Rydberg blockade phenomenon and the hybridisation of excitons and photons forming polaritons in a Cu2O-filled microresonator. Under pulsed resonant excitation polariton resonance frequencies are renormalised due to the reduction of the photon-exciton coupling with increasing exciton density. Theoretical analysis shows that the Rydberg blockade plays a major role in the experimentally observed scaling of the polariton nonlinearity coefficient as ∝ n4.4±1.8 for principal quantum numbers up to n = 7. Such high principal quantum numbers studied in a polariton system for the first time are essential for realisation of high Rydberg optical nonlinearities, which paves the way towards quantum optical applications and fundamental studies of strongly correlated photonic (polaritonic) states in a solid state system.

2.
Nat Mater ; 21(7): 767-772, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35422507

ABSTRACT

Giant Rydberg excitons with principal quantum numbers as high as n = 25 have been observed in cuprous oxide (Cu2O), a semiconductor in which the exciton diameter can become as large as ∼1 µm. The giant dimension of these excitons results in excitonic interaction enhancements of orders of magnitude. Rydberg exciton-polaritons, formed by the strong coupling of Rydberg excitons to cavity photons, are a promising route to exploit these interactions and achieve a scalable, strongly correlated solid-state platform. However, the strong coupling of these excitons to cavity photons has remained elusive. Here, by embedding a thin Cu2O crystal into a Fabry-Pérot microcavity, we achieve strong coupling of light to Cu2O Rydberg excitons up to n = 6 and demonstrate the formation of Cu2O Rydberg exciton-polaritons. These results pave the way towards realizing strongly interacting exciton-polaritons and exploring strongly correlated phases of matter using light on a chip.

3.
J Phys Chem Lett ; 8(3): 547-552, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28045534

ABSTRACT

One-dimensional J aggregates present narrow and intense absorption and emission spectra that are interesting for photonics applications. Matrix immobilization of the aggregates, as required for most device architectures, has recently been shown to induce a non-Gaussian (Lévy type) defect distribution with heavy tails, expected to influence exciton relaxation. Here we perform two-dimensional electronic spectroscopy (2DES) in one-dimensional J aggregates of the cyanine dye TDBC, immobilized in a gel matrix, and we quantitatively model 2DES maps by nonlinear optimization coupled to quantum mechanical calculations of the transient excitonic response. We find that immobilization causes strong non-Gaussian off-diagonal disorder, leading to a segmentation of the chains. Intersegmental exciton transfer is found to proceed on the picosecond time scale, causing a long-lasting excitation memory. These findings can be used to inform the design of optoelectronic devices based on J aggregates as they allow for control of exciton properties by disorder management.

4.
Opt Lett ; 41(10): 2245-8, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27176973

ABSTRACT

We investigate experimentally the interaction between amplified spontaneous emission (ASE) and a soliton, which are both generated in a dye-doped nematic liquid crystal (LC) cell. A light beam is injected through an optical fiber slid into the cell to form a soliton beam. ASE is then automatically collected by this self-induced waveguide and efficiently coupled into the same optical fiber, in the backward direction. We demonstrate that the presence of the soliton improves the ASE collection by one order of magnitude. We also show that the ASE is highly polarized in the plane of the LC cell and that the ASE spectrum depends on the pump stripe orientation with respect to the LC director. The origin of the spectral anisotropy of the gain curves is determined with the help of femtosecond pump-probe spectroscopy.

5.
Phys Chem Chem Phys ; 14(39): 13646-50, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22964896

ABSTRACT

In a smart solution-processable luminescent poly(norbornene)/oxazine-1 (Ox1) intercalated fluoromica nanohybrid, the supramolecular organization of the Ox1 dyes can be tuned at the nanoscale level and a deep red emission band switched on by inducing a phase segregation of aligned molecules within the fluoromica layered scaffold. By combining low-temperature photoluminescence and ultrafast pump-probe spectroscopy we prove that the nanoconstrained Ox1 molecules are organized in a J-type packing and we highlight the critical factor that controls such a supramolecular dye arrangement.


Subject(s)
Fluorescent Dyes/chemistry , Nanostructures/chemistry , Oxazines/chemistry , Plastics/chemistry , Luminescence , Solutions , Spectrum Analysis , Temperature
6.
Nanoscale ; 4(7): 2219-26, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22358178

ABSTRACT

This article is devoted to the exploration of the benefits of a new ultrafast confocal pump-probe technique, able to study the photophysics of different structured materials with nanoscale resolution. This tool offers many advantages over standard stationary microscopy techniques because it directly interrogates excited state dynamics in molecules, providing access to both radiative and non-radiative deactivation processes at a local scale. In this paper we present a few different examples of its application to organic semiconductor systems. The first two are focussed on the study of the photophysics of phase-separated polymer blends: (i) a blue-emitting polyfluorene (PFO) in an inert matrix of PMMA and (ii) an electron donor polythiophene (P3HT) mixed with an electron acceptor fullerene derivative (PCBM). The experimental results on these samples demonstrate the capability of the technique to unveil peculiar interfacial dynamics at the border region between phase-segregated domains, which would be otherwise averaged out using conventional pump-probe spectroscopy. The third example is the study of the photophysics of isolated mesoscopic crystals of the PCBM molecule. Our ultrafast microscope could evidence the presence of two distinctive regions within the crystals. In particular, we could pinpoint for the first time areas within the crystals showing photobleaching/stimulated emission signals from a charge-transfer state.


Subject(s)
Nanocomposites/chemistry , Nanocomposites/ultrastructure , Spectrum Analysis/methods , Fluorenes/chemistry , Fullerenes/chemistry , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Models, Biological , Nanostructures/chemistry , Optics and Photonics , Organic Chemicals/chemistry , Polymethyl Methacrylate/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...