Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8015, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580719

ABSTRACT

Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.


Subject(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Phylogeny
2.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37530518

ABSTRACT

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Subject(s)
Crops, Agricultural , Polyploidy , Base Sequence , Chromosome Mapping/methods , Mutation , Phenotype , Crops, Agricultural/genetics , Genome, Plant/genetics , Gene Editing
3.
Plants (Basel) ; 11(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36559692

ABSTRACT

Root hairs play crucial roles in the roots, including nutrient uptake, water assimilation, and anchorage with soil, along with supporting rhizospheric microorganisms. In rice, ammonia uptake is mediated by a specialized ammonium transporter (AMT). AMT1;1, AMT1;2, and AMT1;3 have been extensively studied in relation to nitrogen signaling. Cellulose synthase-like D1 (CSLD1) is essential for cell expansion and is highly specific to root hair cells. csld1 mutants showed successful initiation but failed to elongate. However, when nitrogen was depleted, csld1 root hairs resumed elongation. Further experiments revealed that in the presence of ammonium (NH4+), csld1 roots failed to elongate. csld1 elongated normally in the presence of nitrate (NO3−). Expression analysis showed an increase in root hair-specific AMT1;2 expression in csld1. CSLD1 was positively co-expressed with AMT1;2 changing nitrogen concentration in the growth media. CSLD1 showed increased expression in the presence of both ammonium and nitrate. Methylammonium (MeA) treatment of CSLD1 overexpression lines suggests that CSLD1 does not directly participate in nitrogen transport. Further studies on the root hair elongation mutant sndp1 showed that nitrogen assimilation is unlikely to depend on root hair length. Therefore, these results suggest that CSLD1 is closely involved in nitrogen-dependent root hair elongation and regulation of AMT1;2 expression in rice roots.

4.
Int J Mol Sci ; 23(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35806155

ABSTRACT

In tomato cultivation, a rare natural mutation in the flowering repressor antiflorigen gene SELF-PRUNING (sp-classic) induces precocious shoot termination and is the foundation in determinate tomato breeding for open field production. Heterozygous single flower truss (sft) mutants in the florigen SFT gene in the background of sp-classic provide a heterosis-like effect by delaying shoot termination, suggesting the subtle suppression of determinacy by genetic modification of the florigen-antiflorigen balance could improve yield. Here, we isolated three new sp alleles from the tomato germplasm that show modified determinate growth compared to sp-classic, including one allele that mimics the effect of sft heterozygosity. Two deletion alleles eliminated functional transcripts and showed similar shoot termination, determinate growth, and yields as sp-classic. In contrast, amino acid substitution allele sp-5732 showed semi-determinate growth with more leaves and sympodial shoots on all shoots. This translated to greater yield compared to the other stronger alleles by up to 42%. Transcriptome profiling of axillary (sympodial) shoot meristems (SYM) from sp-classic and wild type plants revealed six mis-regulated genes related to the floral transition, which were used as biomarkers to show that the maturation of SYMs in the weaker sp-5732 genotype is delayed compared to sp-classic, consistent with delayed shoot termination and semi-determinate growth. Assessing sp allele frequencies from over 500 accessions indicated that one of the strong sp alleles (sp-2798) arose in early breeding cultivars but was not selected. The newly discovered sp alleles are potentially valuable resources to quantitatively manipulate shoot growth and yield in determinate breeding programs, with sp-5732 providing an opportunity to develop semi-determinate field varieties with higher yields.


Subject(s)
Solanum lycopersicum , Alleles , Florigen/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Meristem/genetics , Mutation , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/metabolism
5.
Front Plant Sci ; 13: 894545, 2022.
Article in English | MEDLINE | ID: mdl-35620680

ABSTRACT

Rice cultivation needs extensive amounts of water. Moreover, increased frequency of droughts and water scarcity has become a global concern for rice cultivation. Hence, optimization of water use is crucial for sustainable agriculture. Here, we characterized Loose Plant Architecture 1 (LPA1) in vasculature development, water transport, drought resistance, and grain yield. We performed genetic combination of lpa1 with semi-dwarf mutant to offer the optimum rice architecture for more efficient water use. LPA1 expressed in pre-vascular cells of leaf primordia regulates genes associated with carbohydrate metabolism and cell enlargement. Thus, it plays a role in metaxylem enlargement of the aerial organs. Narrow metaxylem of lpa1 exhibit leaves curling on sunny day and convey drought tolerance but reduce grain yield in mature plants. However, the genetic combination of lpa1 with semi-dwarf mutant (dep1-ko or d2) offer optimal water supply and drought resistance without impacting grain-filling rates. Our results show that water use, and transports can be genetically controlled by optimizing metaxylem vessel size and plant height, which may be utilized for enhancing drought tolerance and offers the potential solution to face the more frequent harsh climate condition in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...