Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci ; 482023.
Article in English | MEDLINE | ID: mdl-38047489

ABSTRACT

Significant progress has been made in understanding carotenoid biosynthesis in tomato (Solanum lycopersicum), and most pathway genes have been cloned and characterized. However, isolation and characterization of novel fruit ripening mutants is a continuous and essential process. This study describes the characterization of the Tan406 (Tangerine406) mutant of Solanum lycopersicum. Fruits of Tan406-mutant plants have a unique orange color and accumulate prolycopene instead of lycopene. Genetic analysis revealed that a monogenic recessive mutation affects fruit pigmentation in the mutant, which inhibits the conversion of prolycopene to lycopene. Further, molecular analysis indicates that fruit phenotype is attributed to loss of CRTISO gene function, which encodes a carotenoid isomerase enzyme that converts prolycopene to lycopene. The loss of gene function is due to the deletion of 406 bp from the CRTISO promoter region. Analysis of genome-wide transcriptome expression profiling identified several hundreds of differentially expressed genes in the fruit ripening stages. The results of microarray studies showed a tendency for upregulation of the genes at the mature green stage and downregulation at the fully ripened stage in the mutant. The isolated mutant can be used for the development of varieties having altered nutritional value.


Subject(s)
Solanum lycopersicum , Lycopene/metabolism , Solanum lycopersicum/genetics , Gene Expression Regulation, Plant , Carotenoids/metabolism , Mutation , Fruit/genetics , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Front Chem ; 11: 1218588, 2023.
Article in English | MEDLINE | ID: mdl-37736256

ABSTRACT

Nanobiotechnology is a popular branch of science that is gaining interest among scientists and researchers as it allows for the green manufacturing of nanoparticles by employing plants as reducing agents. This method is safe, cheap, reproducible, and eco-friendly. In this study, the therapeutic property of Piper nigrum fruit was mixed with the antibacterial activity of metallic copper to produce copper nanoparticles. The synthesis of copper nanoparticles was indicated by a color change from brown to blue. Physical characterization of Piper nigrum copper nanoparticles (PN-CuNPs) was performed using UV-vis spectroscopy, FT-IR, SEM, EDX, XRD, and Zeta analyzer. PN-CuNPs exhibited potential antioxidant, antibacterial, and cytotoxic activities. PN-CuNPs have shown concentration-dependent, enhanced free radical scavenging activity, reaching maximum values of 92%, 90%, and 86% with DPPH, H2O2, and PMA tests, respectively. The antibacterial zone of inhibition of PN-CuNPs was the highest against Staphylococcus aureus (23 mm) and the lowest against Escherichia coli (10 mm). PN-CuNPs showed 80% in vitro cytotoxicity against MCF-7 breast cancer cell lines. Furthermore, more than 50 components of Piper nigrum extract were selected and subjected to in silico molecular docking using the C-Docker protocol in the binding pockets of glutathione reductase, E. coli DNA gyrase topoisomerase II, and epidermal growth factor receptor (EGFR) tyrosine to discover their druggability. Pipercyclobutanamide A (26), pipernigramide F (32), and pipernigramide G (33) scored the highest Gibbs free energy at 50.489, 51.9306, and 58.615 kcal/mol, respectively. The ADMET/TOPKAT analysis confirmed the favorable pharmacokinetics, pharmacodynamics, and toxicity profiles of the three promising compounds. The present in silico analysis helps us to understand the possible mechanisms behind the antioxidant, antibacterial, and cytotoxic activities of CuNPs and recommends them as implicit inhibitors of selected proteins.

3.
Appl Biochem Biotechnol ; 194(10): 4424-4438, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35357664

ABSTRACT

The emergence of new technologies has led to the discovery of the biological properties of nanoparticles through green approach. In the present investigation, we report the potential antibacterial, antioxidant, and anti-diabetic properties of copper nanoparticle (CuNPs) synthesized by reducing 3 mM copper acetate solution with aqueous leaf extract of Cocculus hirsutus. A colour change from deep brown to dark greenish brown indicated the formation of copper nanoparticles. The so-formed CuNPs were characterized by employing UV spectroscopy, FTIR, SEM, and EDX analyses which described sheet-like structure morphology having typical size of 63.46 nm. Later, the synthesized CuNPs efficiency was evaluated against bacterial pathogens, and was found highly toxic to B. subtilis and S. aureus strains. The synthesized CuNPs were examined through H2O2 and PMA assays which demonstrated the highest free radical scavenging activity. Besides, the resulted CuNPs revealed the higher anti-diabetic efficacy in both the [Formula: see text]-amylase and [Formula: see text] -glucosidase inhibition assays (64.5% ± 0.11 and 68.5% ± 0.11, respectively). Finally, our findings report that C. hirsutus can be exploited as a source for green synthesis of CuNPs, having potent in vitro antioxidant, antibacterial, and anti-diabetic properties.


Subject(s)
Cocculus , Menispermaceae , Metal Nanoparticles , Amylases , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Copper/chemistry , Glucosidases , Hydrogen Peroxide , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...