Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710898

ABSTRACT

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Subject(s)
Antifungal Agents , Aspergillus niger , Candida albicans , Drug Delivery Systems , Drug Liberation , Imidazoles , Nanofibers , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanofibers/chemistry , Candida albicans/drug effects , Aspergillus niger/drug effects , Drug Delivery Systems/methods , Imidazoles/chemistry , Imidazoles/administration & dosage , Imidazoles/pharmacology , Delayed-Action Preparations , Microbial Sensitivity Tests/methods , Drug Carriers/chemistry , Drug Stability
2.
J Anaesthesiol Clin Pharmacol ; 40(1): 95-100, 2024.
Article in English | MEDLINE | ID: mdl-38666173

ABSTRACT

Background and Aims: LMA ProSeal (PLMA) is a commonly used airway maintenance device in elective procedures and is routinely inserted from the head-end of the patient. It is also used in pre-hospital emergencies where it may not always be possible to access the head-end. This study aims to compare the insertion characteristics of PLMA when inserted while standing, either at the head-end or from the front. Material and Methods: After institutional ethics committee approval, 60 consenting patients of either sex, between 18 and 60 years, ASA class I/II, and scheduled to undergo elective surgeries were randomly allocated to either group H (head-end insertion) or group F (front-end insertion). Patients with anticipated difficult airway, chronic respiratory disease, obesity, and who were pregnant were excluded. Insertion time, ease of insertion, fiber optic view, ease of drain tube insertion, number of attempts and success rate were noted. Normally distributed quantitative variables were compared using t-test, and qualitative variables were compared using Chi-squared test. A P < 0.05 was considered significant. Results: Insertion time in group H (23.76 ± 4.48 s) was lesser than in group F (30.53 ± 6.23s) (P = 0.027). Ease of insertion (P = 0.052), fiber optic view, ease of drain tube placement (P = 1.000), and number of attempts (P = 1.000) were comparable among the groups. Conclusion: Although the insertion time from the front is longer than from the head-end, the other insertion characteristics of PLMA including ease of its insertion, placement and success rate of placement are similar when it is inserted from the front or from the head-end. It is an appropriate airway device for securing the airway when the head-end is inaccessible.

3.
Curr Microbiol ; 81(5): 118, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492019

ABSTRACT

Synthesizing nanoparticles through a green synthesis approach is common nowadays. Cyanobacteria have attained great importance in the field of biosynthesis of nanoparticles as there is no use of toxic chemicals as reducing or capping agents for the synthesis of metal oxide nanoparticles. Micronutrient-based nano-formulations have become a topic of great interest in recent times due to their various advantageous properties and applications in agriculture. The current study aims to exploit the potential cyanobacterial strains isolated from different locations such as freshwater and soil ecosystems. The potential cyanobacterial isolates were screened based on their multiple plant growth promoting (PGP) attributes such as Indol acetic acid (IAA) production, siderophores, and phosphate solubilization. After the screening of cyanobacteria based on multiple PGP activities, the cyanobacterial strain was identified at the species level as Pseudanabaena foetida RJ1, based on microscopy and molecular characterization using 16S rRNA gene sequencing. The cyanobacterial biomass extract and cell-free extracts are utilized for the synthesis of CuO micronutrient Nanoparticles (NPs). The cyanobacterial strain Pseudanabaena foetida RJ1 possesses plant growth-promoting (PGP) attributes that provide reduction and capping for CuO NPs. The synthesized NPs were characterized and subjected to make a nano-formulation, utilizing the cyanobacteria-mediated CuO NPs along with low-cost zeolite as an adsorbent. The application of cyanobacterial biomass extract and cell-free extract provided an excellent comparative aspect in terms of micronutrient NP synthesis. The NPs in the form of formulations were applied to germinated paddy seeds (Pusa Basmati -1509) with varying concentrations (5, 10, 15 mg/l). Effects of cyanobacteria based CuO NPs on hydroponically grown paddy crops were analyzed. The application of nano-formulations has shown a significant increase in plant growth promotion in rice plants under hydroponics conditions. There is no such type of comparative investigation reported earlier, and NPs of micronutrients can be utilized as a new economic nanofertilizer and can be applied to plants for their growth promotion.


Subject(s)
Cyanobacteria , Metal Nanoparticles , Nanoparticles , Oryza , Copper/pharmacology , Hydroponics , RNA, Ribosomal, 16S/genetics , Ecosystem , Metal Nanoparticles/chemistry , Micronutrients , Plant Extracts
4.
J Anaesthesiol Clin Pharmacol ; 39(3): 451-457, 2023.
Article in English | MEDLINE | ID: mdl-38025583

ABSTRACT

Background and Aims: Pre-eclamptic parturients may have an exaggerated response to vasopressors. This study compares the efficacy of a 50 µg fixed bolus of phenylephrine for treatment of post-spinal hypotension in pre-eclamptic versus normotensive parturients. Material and Methods: After written informed consent and ethics committee approval, 30 normotensive and 30 pre-eclamptic parturients between 18 and 40 years with singleton term pregnancy about to undergo cesarean section (CS) under spinal anesthesia were included. Post-spinal hypotension was treated with a 50 µg fixed bolus of phenylephrine. The cumulative dose of phenylephrine, the number of boluses, and the median dose required to treat the first hypotensive episode, total number of hypotensive episodes, maternal side effects, neonatal appearance, pulse, grimace, activity, and respiration (APGAR) scores, and umbilical arterial cord blood pH were noted. Statistical analysis was done using Student's t-test, Mann-Whitney U-test, Chi-square test/Fisher's exact test as appropriate. A P <0.05 was considered significant. Results: The cumulative dose and number of boluses of phenylephrine required to treat post-spinal hypotension were comparable. The median dose required to treat the first episode of post-spinal hypotension was also similar (p = 0.792). The time to develop the first hypotensive episode was significantly earlier for group N (p = 0.002). The efficacy of a single fixed bolus of 50 µg phenylephrine was similar in both groups (p = 1.000). Neonatal median APGAR scores at 1 min after birth were significantly higher for group N (p = 0.016). Conclusion: A fixed-dose bolus of 50 µg phenylephrine is safe and effective in treating post-spinal hypotension in pre-eclampsia. The efficacy of phenylephrine is comparable in pre-eclamptic and normotensive parturients.

5.
Food Chem Toxicol ; 181: 114067, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813177

ABSTRACT

Azo Food dyes (AFDs), which are widely used in the food industry, may be associated with adverse health effects. We have investigated the effects of the AFDs metanil yellow (MY), malachite green (MG), and sudan III (SIII) on cognitive impairment, oxidative stress, mitochondrial dysfunction, neuro-enzyme activities, and histopathology in rats. Rats treated with MY (430 mg/kg), MG (13.75 mg/kg), SIII (250 mg/kg), and a mixture (MY 143.33 + MG 4.52 + SIII 83.33 mg/kg) p.o. for 60 d showed significant learning and memory impairments. Significant biochemical changes were observed in the rat frontal cortex and hippocampus: increases in lipid peroxidation and the activity of acetylcholinesterase (AChE); decreases in the level of reduced glutathione and the activities of catalase, superoxide dismutase, and mitochondrial complexes I and II. Histological damage to brain neurons accompanied the learning and memory impairments and was linked with other biochemical and neurochemical alterations.


Subject(s)
Acetylcholinesterase , Brain , Rats , Animals , Rats, Wistar , Acetylcholinesterase/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress , Memory Disorders/pathology , Maze Learning , Lipid Peroxidation
6.
Int J Dev Neurosci ; 83(6): 518-531, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37337287

ABSTRACT

The environment is varying day by day with the introduction of chemicals such as pesticides, most of which have not been effectively studied for their influence on a susceptible group of population involving infants and pregnant females. Rotenone is an organic pesticide used to prepare Parkinson's disease models. A lot of literature is available on the toxicity of rotenone on the adult brain, but to the best of our knowledge, effect of rotenone on prenatally exposed mice has never been investigated yet. Therefore, the recent work aims to evaluate the toxic effect of rotenone on mice, exposed prenatally. We exposed female mice to rotenone at the dose of 5 mg/Kg b.w. throughout the gestational period with oral gavage. We then investigated the effects of rotenone on neonate's central nervous systems as well as on postnatal day (PD) 35 offspring. In the rotenone group, we observed slow physical growth, delays in physical milestones and sensorimotor reflex in neonates and induction of anxiety and impairment in cognitive performances of offspring at PD-35. Additionally, immunohistochemical analysis revealed a marked reduction in TH-positive neurons in substantia nigra. Histological examination of the cerebellum revealed a decrease in Purkinje neurons in the rotenone exposed group as compared to the control. The data from the study showed that prenatally exposure to rotenone affects growth, physical milestones, neuronal population and behaviour of mice when indirectly exposed to the offspring through their mother. This study could provide a great contribution to researchers to find out the molecular mechanism and participating signalling pathway behind these outcomes.


Subject(s)
Pesticides , Rotenone , Humans , Pregnancy , Animals , Mice , Female , Rotenone/toxicity , Dopamine/metabolism , Brain/metabolism , Reflex
7.
Appl Intell (Dordr) ; : 1-19, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36777881

ABSTRACT

Nowadays, the hectic work life of people has led to sleep deprivation. This may further result in sleep-related disorders and adverse physiological conditions. Therefore, sleep study has become an active research area. Sleep scoring is crucial for detecting sleep-related disorders like sleep apnea, insomnia, narcolepsy, periodic leg movement (PLM), and restless leg syndrome (RLS). Sleep is conventionally monitored in a sleep laboratory using polysomnography (PSG) which is the recording of various physiological signals. The traditional sleep stage scoring (SSG) done by professional sleep scorers is a tedious, strenuous, and time-consuming process as it is manual. Hence, developing a machine-learning model for automatic SSG is essential. In this study, we propose an automated SSG approach based on the biorthogonal wavelet filter bank's (BWFB) novel least squares (LS) design. We have utilized a huge Wisconsin sleep cohort (WSC) database in this study. The proposed study is a pioneering work on automatic sleep stage classification using the WSC database, which includes good sleepers and patients suffering from various sleep-related disorders, including apnea, insomnia, hypertension, diabetes, and asthma. To investigate the generalization of the proposed system, we evaluated the proposed model with the following publicly available databases: cyclic alternating pattern (CAP), sleep EDF, ISRUC, MIT-BIH, and the sleep apnea database from St. Vincent's University. This study uses only two unipolar EEG channels, namely O1-M2 and C3-M2, for the scoring. The Hjorth parameters (HP) are extracted from the wavelet subbands (SBS) that are obtained from the optimal BWFB. To classify sleep stages, the HP features are fed to several supervised machine learning classifiers. 12 different datasets have been created to develop a robust model. A total of 12 classification tasks (CT) have been conducted employing various classification algorithms. Our developed model achieved the best accuracy of 83.2% and Cohen's Kappa of 0.7345 to reliably distinguish five sleep stages, using an ensemble bagged tree classifier with 10-fold cross-validation using WSC data. We also observed that our system is either better or competitive with existing state-of-art systems when we tested with the above-mentioned five databases other than WSC. This method yielded promising results using only two EEG channels using a huge WSC database. Our approach is simple and hence, the developed model can be installed in home-based clinical systems and wearable devices for sleep scoring.

8.
Microbiol Resour Announc ; 11(11): e0075322, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36214692

ABSTRACT

We report the genomic features of Bradyrhizobium sp. strain SRS-191, which was isolated from a former nuclear legacy site in Aiken, South Carolina, USA. With a genome size of 7,621,400 bp, the strain harbored genes not only for environmentally beneficial traits (e.g., heavy metal resistance, nitrogen fixation, and aromatic biodegradation) but also for antimicrobial resistance.

9.
Front Vet Sci ; 9: 895325, 2022.
Article in English | MEDLINE | ID: mdl-35558897

ABSTRACT

The present study investigated the effect of superstimulation to improve in vitro embryo production in the Gulf area, where the temperature is high. Holstein cows were classified into the control and superstimulation groups. Superstimulation was induced with a single intramuscular injection of pregnant mare serum gonadotropin (PMSG; 2500 IU) on day 14 of the estrus cycle (day 0; estrus). The development of follicles was evaluated by ultrasonography of the ovaries daily. At 40 h after the PMSG injection, oocytes were collected by the ovum pick-up (OPU) technique. OPU was performed at the same stage of the estrus cycle in the control group as in the superstimulation group. The number of follicles with a diameter of more than 6 mm and the number of retrieved cumulus-oocyte complexes were significantly higher in the superstimulation group than in the control group. Furthermore, the maturation rate was higher in the superstimulation group than in the control group. Cloned embryos were produced by somatic cell nuclear transfer using matured oocytes. The cleavage and blastocyst formation rates were significantly higher in the superstimulation group than in the control group. In conclusion, a single injection of PMSG can facilitate the efficient production of cloned cow embryos.

10.
Zygote ; 30(4): 522-527, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35357293

ABSTRACT

We compared the pregnancy and live birth rates following transfer of early-stage embryos or blastocysts produced by somatic cell nuclear transfer using in vitro-matured oocytes. In total 102 ovaries were collected from dromedary camels at a local abattoir; from these 1048 cumulus-oocytes complexes (COCs) were aspirated and cultured for 42 h in a commercial maturation medium. Metaphase II oocytes were subjected to nuclear transfer. Somatic cell nuclear transfer-derived embryos were cultured in a commercial embryo medium for 2 or 7 days. Next, 71 early-stage embryos were surgically transferred to the left fallopian tube of 28 recipients and 47 blastocysts were transferred to the left uterine horn of 26 recipients. Early pregnancy was detected by serum progesterone (P4), and pregnancy was confirmed using ultrasonography on days 30 and 90 after embryo transfer. Pregnancy rate based on P4 level was 17.86% (5/28) and 11.54% (3/26) for early-stage embryo and blastocyst transfer, respectively. In the early-stage embryo group, out of five recipients, one recipient had lost the pregnancy by the first ultrasonography on day 30; two other recipients aborted at 14 and 24 weeks, and two recipients gave live births. In the blastocyst group, out of three recipients, one lost the pregnancy at an early stage and two recipients gave live births. Therefore, for dromedary camels, we recommend transvaginal blastocyst transfer from the standpoint of the pregnancy and live birth rate, ease of the transfer procedure, and comfort and safety of the recipients.


Subject(s)
Camelus , Embryo Culture Techniques , Animals , Blastocyst , Embryo Culture Techniques/methods , Embryo Transfer , Female , Oocytes , Pregnancy , Pregnancy Rate
11.
Anim Biosci ; 35(2): 177-183, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34289583

ABSTRACT

OBJECTIVE: The present study evaluated the efficiency of embryo development and pregnancy of somatic cell nuclear transfer (SCNT) embryos using different source-matured oocytes in Camelus dromedarius. METHODS: Camelus dromedarius embryos were produced by SCNT using in vivo- and in vitro- matured oocytes. In vitro embryo developmental capacity of reconstructed embryos was evaluated. To confirm the efficiency of pregnancy and live birth rates, a total of 72 blastocysts using in vitro- matured oocytes transferred into 45 surrogates and 95 blastocysts using in vivo- matured oocytes were transferred into 62 surrogates by transvaginal method. RESULTS: The collected oocytes derived from ovum pick up showed higher maturation potential into metaphase II oocytes than oocytes from the slaughterhouse. The competence of cleavage, and blastocyst were also significantly higher in in vivo- matured oocytes than in vitro- matured oocytes. After embryo transfer, 11 pregnant and 10 live births were confirmed in in vivo- matured oocytes group, and 2 pregnant and 1 live birth were confirmed in in vitro- matured oocytes group. Furthermore, blastocysts produced by in vivo-matured oocytes resulted in significantly higher early pregnancy and live birth rates than in vitromatured oocytes. CONCLUSION: In this study, SCNT embryos using in vivo- and in vitro-matured camel oocytes were successfully developed, and pregnancy was established in recipient camels. We also confirmed that in vivo-matured oocytes improved the development of embryos and the pregnancy capacity using the blastocyst embryo transfer method.

12.
Drug Chem Toxicol ; 45(6): 2852-2859, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34753371

ABSTRACT

Food colorants are important food additives that not only enhance the appearance of food but also appetite. These can be obtained from natural and synthetic sources, but synthetic sources are more popular, efficient, and potential. Non-permitted food colorants (NPFCs) are banned, but their injudicious use in developing countries associated with various adverse health effects. They have potentially toxic effects on the body organs like the brain, liver, kidney, spleen, gut, etc. In view of their toxicity pattern, the present study aims to investigate the effect of three NPFCs (MY: Metanil yellow; MG: Malachite green; SIII: Sudan III) on oxidative stress, mitochondrial complexes, neurochemicals, and histological changes in the cerebellum of rats. Rats treated with MY (430 mg/kg), MG (13.75 mg/kg), SIII (250 mg/kg), and their mixtures (YGR) (MY 143.33 + MG 4.52 + SIII 83.33 mg/kg) p.o. for 60 days showed a significant increase in lipid peroxidation and decreased level of reduced glutathione, superoxide dismutase, and catalase activity as compared to controls. An increase in the activity of acetylcholinesterase (AChE) and a significant decrease in the activity of monoamine oxidase-B (MAO-B) and mitochondrial complex I and II was also observed in NPFCs treated rats as compared to controls. Further, the histological study also revealed the loss of Purkinje neurons in the cerebellum of the rat brain. The results of the present study indicate that NPFCs exposure to rats enhances oxidative stress and alters the activity of neurochemicals and mitochondrial complexes which could further lead to neuronal loss and behavioral dysfunctions.


Subject(s)
Food Coloring Agents , Neurotoxicity Syndromes , Animals , Rats , Acetylcholinesterase/metabolism , Brain , Catalase/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Food Coloring Agents/toxicity , Glutathione/metabolism , Lipid Peroxidation , Monoamine Oxidase , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Oxidative Stress , Superoxide Dismutase/metabolism
13.
Arch Microbiol ; 204(1): 21, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34910254

ABSTRACT

Di-(2-ethylhexyl)-phthalate (DEHP) is the phthalate ester frequently utilized as a plasticizer, commonly found in cosmetics, packaging materials; moreover, it has carcinogenic and mutagenic effects on humans. In the current study, we isolated the soil bacterium Rhodococcus sp. PFS1 and to assess its DEHP degradation ability in various environmental conditions. The strain PFS1 was isolated from paddy field soil and identified by the 16S rRNA sequencing analyses. The strain PFS1 was examined for its biodegradation ability of DEHP at various pH, temperature, salt concentration, glucose concentration, and high and low concentrations of DEHP. Moreover, the biodegradation of DEHP at a contaminated soil environment by strain PFS1 was assessed. Further, the metabolic pathway of DEHP degradation by PFS1 was analyzed by HPLC-MS analysis. The results showed that the strain PFS1 effectively degraded the DEHP at neutral pH and temperature 30 °C; moreover, expressed excellent DEHP degradation at the high salt concentration (up to 50 g/L). The strain PFS1 was efficiently degraded the different tested phthalate esters (PAEs) up to 90%, significantly removed the DEHP contamination in soil along with native organisms which are present in soil up to 94.66%; nevertheless, the PFS1 alone degraded the DEHP up to 87.665% in sterilized soil. According to HPLC-MS analysis, DEHP was degraded into phthalate (PA) by PFS1 strain via mono(2-ethylehxyl) phthalate (MEHP); then PA was utilized for cell growth. These results suggest that Rhodococcus sp. PFS1 has excellent potential to degrade DEHP at various environmental conditions especially in contaminated paddy field soil.


Subject(s)
Diethylhexyl Phthalate , Rhodococcus , Biodegradation, Environmental , Humans , Phthalic Acids , RNA, Ribosomal, 16S/genetics , Rhodococcus/genetics , Soil
14.
Anim Reprod Sci ; 233: 106842, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34530180

ABSTRACT

The embryonic stage, site of embryo transfer in the reproductive tract of the surrogate, and embryo transfer method are important for the successful production of offspring. In the present study, there was comparison of pregnancy rates in camels following the surgical transfer of early-developmental stage embryos at Day 2 and transvaginal transfer of blastocysts at Day 7. Embryos were produced by somatic cell nuclear transfer using in vivo-matured oocytes and ear fibroblasts as donor cells. A total of 305 oocytes were collected from 27 donors, among which 275 oocytes were in metaphase II. In Group A, 110 oocytes were reconstructed, 78 fused oocytes were cultured for 2 days, and 37 early-developmental stage embryos were transferred into 13 surrogates. In Group B, 165 oocytes were utilized, 117 fused oocytes were cultured for 7 days, and 24 blastocysts were trans-vaginally transferred into 12 surrogates. Pregnancy was determined when there was an increase in serum progesterone concentrations and was confirmed using real-time ultrasonography. Microsatellite analysis was performed to confirm the parentage of offspring. Two live births occurred in Groups A and B (live birth rate of 15.4% and 16.7%, respectively). Results indicate both early-developmental stage embryos and blastocysts produced by somatic cell nuclear transfer using in vivo-matured oocytes can lead to live births in camel with similar efficiency. It, therefore, is recommended that trans-vaginal blastocyst transfer be utilized for camels considering the pregnancy and live birth rates, ease of the transfer procedure and comfort and safety of surrogates.

16.
Colloids Surf B Biointerfaces ; 203: 111760, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33872827

ABSTRACT

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Docetaxel/pharmacology , Drug Carriers/therapeutic use , Female , Humans , Mice , Mice, Inbred BALB C , Particle Size , Tissue Distribution
17.
Crit Rev Ther Drug Carrier Syst ; 37(2): 135-159, 2020.
Article in English | MEDLINE | ID: mdl-32865903

ABSTRACT

Nail psoriasis is a chronic condition which causes pain and functional impairment; thus, it restricts the activities of daily living and worsens the quality of life. Different chemotherapeutic options are available for treating nail psoriasis such as systemic, intralesional, and topical therapies. However, current chemotherapy suffers from several limitations and to overcome them, new advancements are being made worldwide. Various reports have been published on current progress in the treatment of nail psoriasis such as clinical efficacy studies of novel antipsoriatic agents and novel formulation strategies for current chemotherapy. There are several novel nail formulations for the treatment of nail disorders, particularly onychomycosis, such as vesicular colloidal structure (liposomes, niosomes, transfersomes, ethosomes, etc.) and nonvesicular colloidal structures (nano-emulgel, nanocapsules, thermosensitive gel, etc.) These formulations can also prove beneficial for the treatment of nail psoriasis, and will be heavily explored in the near future. This review provides a brief introduction to the disease, its pathogenesis, and its treatment modalities. The review also throws light onto progress and future perspectives in nail psoriasis treatment.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Chronic Pain/drug therapy , Immunosuppressive Agents/administration & dosage , Nail Diseases/drug therapy , Psoriasis/drug therapy , Administration, Topical , Chronic Pain/immunology , Chronic Pain/psychology , Clinical Trials as Topic , Colloids , Drug Carriers , Gels , Glucocorticoids/administration & dosage , Humans , Injections, Intralesional , Injections, Subcutaneous , Nail Diseases/complications , Nail Diseases/immunology , Nail Diseases/psychology , Nails/drug effects , Nails/immunology , Nails/pathology , Nanoparticles , Psoriasis/complications , Psoriasis/immunology , Psoriasis/psychology , Quality of Life , Treatment Outcome
18.
Front Microbiol ; 11: 1923, 2020.
Article in English | MEDLINE | ID: mdl-32973703

ABSTRACT

The carriage of both, heavy metal and antibiotic resistance appears to be a common trait in bacterial communities native to long-term contaminated habitats, including the Savannah River Site (SRS). There is widespread soil contamination at the SRS; a United States Department of Energy (DOE) facility with long-term contamination from past industrial and nuclear weapons production activities. To further evaluate the genomic and metabolic traits that underpin metal and antibiotic resistance, a robust mercury (Hg) and uranium (U)-resistant strain- SRS-8-S-2018, was isolated. Minimum inhibitory concentration of this strain revealed resistance to Hg (10 µg/ml) and U (5 mM), the two main heavy metal contaminants at the SRS. Metabolic assessment of strain SRS-8-S-2018 using Biolog metabolic fingerprinting analysis revealed preference for carbohydrate utilization followed by polymers, amino acids, carboxy acids, and esters; this physiological activity diminished when Hg stress was provided at 1 and 3 µg/ml and completely ceased at 5 µg/ml Hg, indicating that continued release of Hg will have negative metabolic impacts to even those microorganisms that possess high resistance ability. Development of antibiotic resistance in strain SRS-8-S-2018 was evaluated at a functional level using phenomics, which confirmed broad resistance against 70.8% of the 48 antibiotics tested. Evolutionary and adaptive traits of strain SRS-8-S-2018 were further assessed using genomics, which revealed the strain to taxonomically affiliate with Serratia marcescens species, possessing a genome size of 5,323,630 bp, 5,261 proteins (CDS), 55 genes for transfer RNA (tRNA), and an average G + C content of 59.48. Comparative genomics with closest taxonomic relatives revealed 360 distinct genes in SRS-8-S-2018, with multiple functions related to both, antibiotic and heavy metal resistance, which likely facilitates the strain's survival in a metalliferous soil habitat. Comparisons drawn between the environmentally isolated Serratia SRS-8-S-2018 with 31 other strains revealed a closer functional association with medically relevant isolates suggesting that propensity of environmental Serratia isolates in acquiring virulence traits, as a function of long-term exposure to heavy metals, which is facilitating development, recruitment and proliferation of not only metal resistant genes (MRGs) but antibiotic resistant genes (ARGs), which can potentially trigger future bacterial pathogen outbreaks emanating from contaminated environmental habitats.

19.
Front Microbiol ; 11: 1024, 2020.
Article in English | MEDLINE | ID: mdl-32655505

ABSTRACT

The majority of environmental microbiomes are not amenable to cultivation under standard laboratory growth conditions and hence remain uncharacterized. For environmental applications, such as bioremediation, it is necessary to isolate microbes performing the desired function, which may not necessarily be the fast growing or the copiotroph microbiota. Toward this end, cultivation and isolation of microbial strains using diffusion chambers (DC) and/or microbial traps (MT) have both been recently demonstrated to be effective strategies because microbial enrichment is facilitated by soil nutrients and not by synthetically defined media, thus simulating their native habitat. In this study, DC/MT chambers were established using soils collected from two US Department of Energy (DOE) sites with long-term history of heavy metal contamination, including mercury (Hg). To characterize the contamination levels and nutrient status, soils were first analyzed for total mercury (THg), methylmercury (MeHg), total carbon (TC), total nitrogen (TN), and total phosphorus (TP). Multivariate statistical analysis on these measurements facilitated binning of soils under high, medium and low levels of contamination. Bacterial and fungal microbiomes that developed within the DC and MT chambers were evaluated using comparative metagenomics, revealing Chthoniobacter, Burkholderia and Bradyrhizobium spp., as the predominant bacteria while Penicillium, Thielavia, and Trichoderma predominated among fungi. Many of these core microbiomes were also retrieved as axenic isolates. Furthermore, canonical correspondence analysis (CCA) of biogeochemical measurements, metal concentrations and bacterial communities revealed a positive correlation of Chthoniobacter/Bradyrhizobium spp., to THg whereas Burkholderia spp., correlated with MeHg. Penicillium spp., correlated with THg whereas Trichoderma spp., and Aspergillus spp., correlated with MeHg, from the MT approach. This is the first metagenomics-based assessment, isolation and characterization of soil-borne bacterial and fungal communities colonizing the diffusion chambers (DC) and microbial traps (MT) established with long-term metal contaminated soils. Overall, this study provides proof-of-concept for the successful application of DC/MT based assessment of mercury resistant (HgR) microbiomes in legacy metal-contaminated soils, having complex contamination issues. Overall, this study brings out the significance of microbial communities and their relevance in context to heavy metal cycling for better stewardship and restoration of such historically contaminated systems.

20.
Microbiol Resour Announc ; 9(30)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703833

ABSTRACT

Metagenomic assessment provides a comprehensive survey of soil microbiota; however, isolation and characterization of functionally relevant microbiota are required prior to their application(s), such as for metal remediation. Toward this end, we report the availability of a culture collection comprising uranium (U)-resistant microbial assemblages (CURMA) to the scientific community.

SELECTION OF CITATIONS
SEARCH DETAIL
...