Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 147: 106092, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689009

ABSTRACT

This study developed a customized hydrostatic pressure-based loading environment to investigate the effect of static hydrostatic pressure on the periodontal ligament fibroblasts (PDLf) in a three-dimensional (3D) collagen-based model. The cylindrical tissue constructs were comprised of PDL fibroblast cells seeded in type I collagen matrices and divided into three experimental groups: Control (no load), low-load (∼0.07 kPa), and high-load (∼60 kPa), all subjected to 24 h of experimental duration. Cells in the 3D construct were stained with fluorophore-conjugated antibodies for cytoskeletal protein F-actin and matricellular protein periostin. Cell culture supernatant was assessed for receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) expression. Transmission electron microscopy examined the contact between the cells and the collagen matrix. Ultrastructural changes in the 3D collagen matrix were also analyzed using scanning electron microscopy. Experiments were performed in triplicates, and data was analyzed using one-way ANOVA (p < 0.05). The 3D PDLf constructs from the low-load group demonstrated the highest levels of homogeneous cell distribution and higher expression of F-actin and periostin with enhanced interaction with the matrix. The collagen matrix in this group showed more closely packed fibers forming thicker bundles when compared to the control and the high-load 3D PDLf constructs. Nonuniform cell distribution with decreased expression of F-actin and periostin was observed in the control and high-load PDLf constructs. The high-load group showed the highest RANKL/OPG expression. This study demonstrated low-level hydrostatic pressure's role in regulating PDLf functions and extracellular matrix response, while excessive hydrostatic pressure may be detrimental to PDL fibroblast cell function.

2.
J Endod ; 49(9): 1145-1153.e3, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37268291

ABSTRACT

INTRODUCTION: This study aimed to understand the influence of periodontal fibroblasts (PDLFs) on clastic differentiation of macrophages (Mφ) in different resorptive environments. METHODS: PDLF-Mφ direct coculture (juxtacrine) was seeded on dentin, cementum, and polystyrene with/without lipopolysaccharide, macrophage colony-stimulating factor, and receptor activator of nuclear factor kappa beta ligand for 7 and 14 days and stained for tartrate-resistant acid phosphatase (TRAP) activity. PDLF-Mφ cocultured on polystyrene were immunostained for CD80, CD206, NFATc1, STAT6, and periostin, and cell culture supernatants were assessed for cytokines on days 2 and 7. Mφ grown in conditioned media of PDLFs (paracrine) and Mφ monoculture were used as controls. Data was analyzed using Student t test and one-way analysis of variance with the Tukey multiple comparisons test (P < .05). RESULTS: PDLF-Mφ coculture showed a higher number of TRAP-positive multinucleated cells than Mφ monoculture on dentin and polystyrene. No TRAP-positive multinucleated cells were observed in paracrine and cementum. The expression of CD80 and CD206 in PDLF-Mφ was similar at day 2, whereas CD206 was greater than CD80 at day 7. The expression of STAT6 was greater than NFATc1 at both days 2 and 7 (P < .05). Periostin expression in the presence of the lipopolysaccharide, macrophage colony-stimulating factor, and receptor activator of nuclear factor kappa beta ligand combination was down-regulated in PDLF monoculture, whereas it was up-regulated in PDLF-Mφ coculture. The cytokine profile of PDLF-Mφ on day 2 was predominated by interleukin (IL)-1ß, tumor necrosis factor alpha, and MMP9 and MMP2 on day 7. IL-6 and IL-8 showed steady expression at both days 2 and 7. CONCLUSIONS: The study highlights the juxtacrine effect of PDLFs on the clastic differentiation of Mφ with a difference in clastic activity between dentin and cementum. The study also emphasizes the temporal effect of tumor necrosis factor alpha, MMP2, MMP9, and IL-1ß on intercellular crosstalk in resorptive environments.


Subject(s)
Macrophage Colony-Stimulating Factor , Root Resorption , Humans , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9/metabolism , Lipopolysaccharides/pharmacology , Ligands , Polystyrenes/metabolism , Polystyrenes/pharmacology , Root Resorption/metabolism , Macrophages/metabolism , Fibroblasts/metabolism , Cell Differentiation , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...