Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 18(4): e1010448, 2022 04.
Article in English | MEDLINE | ID: mdl-35413079

ABSTRACT

Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed.


Subject(s)
Aphids , Babuvirus , Musa , Animals , Aphids/genetics , Babuvirus/genetics , DNA, Viral/genetics , Plant Diseases , RNA, Small Interfering/genetics
2.
EMBO Rep ; 23(3): e53400, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34931432

ABSTRACT

Co-evolution between hosts' and parasites' genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral-like silencing response. To investigate this response's activation, we studied the single-copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full-length genomic flGAG-POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG-POL. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5'OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6), exclusively on shGAG, occurs precisely at this breakage point. This hitherto-unrecognized "translation-dependent silencing" (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Transposable Elements/genetics , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics
3.
Plants (Basel) ; 10(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066062

ABSTRACT

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant-virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.

4.
Mol Plant Microbe Interact ; 31(1): 125-144, 2018 01.
Article in English | MEDLINE | ID: mdl-29140168

ABSTRACT

Tobamoviral replicase possesses an RNA-dependent RNA polymerase (RDR) domain and is translated from genomic (g)RNA via a stop codon readthrough mechanism at a one-to-ten ratio relative to a shorter protein lacking the RDR domain. The two proteins share methyltransferase and helicase domains and form a heterodimer implicated in gRNA replication. The shorter protein is also implicated in suppressing RNA silencing-based antiviral defenses. Using a stop codon mutant of Oilseed rape mosaic tobamovirus (ORMV), we demonstrate that the readthrough replicase (p182) is sufficient for gRNA replication and for subgenomic RNA transcription during systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. However, the mutant virus displays milder symptoms and does not interfere with HEN1-mediated methylation of viral short interfering (si)RNAs or plant small (s)RNAs. The mutant virus tends to revert the stop codon, thereby restoring expression of the shorter protein (p125), even in the absence of plant Dicer-like activities that generate viral siRNAs. Plant RDR activities that generate endogenous siRNA precursors do not prevent replication or movement of the mutant virus, and double-stranded precursors of viral siRNAs representing the entire virus genome are likely synthesized by p182. Transgenic expression of p125 partially recapitulates the ORMV disease symptoms associated with overaccumulation of plant sRNAs. Taken together, the readthrough replicase p182 is sufficient for viral replication and transcription but not for silencing suppression. By contrast, the shorter p125 protein suppresses silencing, provokes severe disease symptoms, causes overaccumulation of unmethylated viral and plant sRNAs but it is not an essential component of the viral replicase complex.


Subject(s)
RNA Interference , RNA-Dependent RNA Polymerase/metabolism , Tobamovirus/enzymology , Tobamovirus/physiology , Virus Replication , Arabidopsis/genetics , Arabidopsis/virology , DNA Methylation/genetics , Plant Diseases/virology , Plants, Genetically Modified , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Sequence Analysis, RNA , Viral Proteins/metabolism
5.
New Phytol ; 211(3): 1020-34, 2016 08.
Article in English | MEDLINE | ID: mdl-27120694

ABSTRACT

Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.


Subject(s)
Arabidopsis/immunology , Arabidopsis/virology , Autophagy/drug effects , Caulimovirus/physiology , Pseudomonas syringae/growth & development , Respiratory Burst , Salicylic Acid/pharmacology , Viral Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Caulimovirus/drug effects , Caulimovirus/pathogenicity , Gene Silencing/drug effects , Immunity, Innate/drug effects , Plant Diseases/microbiology , Plant Diseases/virology , Protein Domains , Pseudomonas syringae/drug effects , Respiratory Burst/drug effects , Sequence Deletion , Viral Proteins/chemistry
6.
Mol Plant Microbe Interact ; 27(12): 1370-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25122481

ABSTRACT

Small interfering RNA (siRNA)-directed gene silencing plays a major role in antiviral defense. Virus-derived siRNAs inhibit viral replication in infected cells and potentially move to neighboring cells, immunizing them from incoming virus. Viruses have evolved various ways to evade and suppress siRNA production or action. Here, we show that 21-, 22-, and 24-nucleotide (nt) viral siRNAs together constitute up to 19% of total small RNA population of Oryza sativa plants infected with Rice tungro bacilliform virus (RTBV) and cover both strands of the RTBV DNA genome. However, viral siRNA hotspots are restricted to a short noncoding region between transcription and reverse-transcription start sites. This region generates double-stranded RNA (dsRNA) precursors of siRNAs and, in pregenomic RNA, forms a stable secondary structure likely inaccessible to siRNA-directed cleavage. In transient assays, RTBV protein P4 suppressed cell-to-cell spread of silencing but enhanced cell-autonomous silencing, which correlated with reduced 21-nt siRNA levels and increased 22-nt siRNA levels. Our findings imply that RTBV generates decoy dsRNA that restricts siRNA production to the structured noncoding region and thereby protects other regions of the viral genome from repressive action of siRNAs, while the viral protein P4 interferes with cell-to-cell spread of antiviral silencing.


Subject(s)
Genome, Viral/genetics , Oryza/virology , Plant Diseases/virology , RNA, Double-Stranded/genetics , Tungrovirus/genetics , Viral Proteins/metabolism , DNA, Complementary/chemistry , DNA, Complementary/genetics , Gene Expression , Gene Library , Oryza/genetics , Plant Leaves , RNA Interference , RNA, Plant/genetics , RNA, Small Interfering/genetics , RNA, Viral/genetics , Sequence Analysis, DNA , Nicotiana/virology , Transcription Initiation Site , Tungrovirus/physiology , Viral Proteins/genetics , Virus Replication
7.
J Virol ; 88(19): 11516-28, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25056897

ABSTRACT

UNLABELLED: Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5'-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5' portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE: We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants.


Subject(s)
Gene Expression Regulation, Viral , Immune Evasion/genetics , Musa/genetics , Plant Viruses/genetics , RNA, Small Interfering/immunology , Retroviridae/genetics , DNA Methylation , Gene Expression Regulation, Plant/immunology , Gene Silencing , Genome, Viral , Musa/immunology , Musa/virology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/virology , Plant Immunity/genetics , Plant Viruses/pathogenicity , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA, Viral/immunology , Retroviridae/pathogenicity , Transcription, Genetic
8.
PLoS One ; 9(2): e88513, 2014.
Article in English | MEDLINE | ID: mdl-24523907

ABSTRACT

Virus-infected plants accumulate abundant, 21-24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this 'siRNA omics' approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense.


Subject(s)
DNA Viruses/genetics , Plant Viruses/genetics , Plants/virology , RNA Viruses/genetics , RNA, Small Interfering/genetics , Contig Mapping , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Mosaic Viruses/genetics , Plant Diseases/virology , Plant Leaves/virology , Polymorphism, Single Nucleotide , RNA Interference , RNA, Double-Stranded , RNA, Small Interfering/metabolism , Sequence Analysis, DNA , Viroids/genetics , Vitis/virology
9.
PLoS Pathog ; 8(9): e1002941, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028332

ABSTRACT

In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3'-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5'-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs.


Subject(s)
Arabidopsis/virology , Geminiviridae/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , RNA, Viral/genetics , 3' Untranslated Regions , 5' Untranslated Regions/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , High-Throughput Nucleotide Sequencing , Plant Diseases/genetics , Plant Diseases/virology , RNA Polymerase II/metabolism , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
10.
Nucleic Acids Res ; 40(13): 6241-54, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22434877

ABSTRACT

Biogenesis of trans-acting siRNAs (tasiRNAs) is initiated by miRNA-directed cleavage of TAS gene transcripts and requires RNA-dependent RNA polymerase 6 (RDR6) and Dicer-like 4 (DCL4). Here, we show that following miR173 cleavage the entire polyadenylated parts of Arabidopsis TAS1a/b/c and TAS2 transcripts are converted by RDR6 to double-stranded (ds)RNAs. Additionally, shorter dsRNAs are produced following a second cleavage directed by a TAS1c-derived siRNA. This tasiRNA and miR173 guide Argonaute 1 complexes to excise the segments from TAS2 and three TAS1 transcripts including TAS1c itself to be converted to dsRNAs, which restricts siRNA production to a region between the two cleavage sites. TAS1c is also feedback regulated by a cis-acting siRNA. We conclude that TAS1c generates a master siRNA that controls a complex network of TAS1/TAS2 siRNA biogenesis and gene regulation. TAS1/TAS2 short dsRNAs produced in this network are processed by DCL4 from both ends in distinct registers, which increases repertoires of tasiRNAs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , RNA Processing, Post-Transcriptional , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , RNA-Dependent RNA Polymerase/metabolism , Arabidopsis/metabolism , Base Sequence , Gene Knockdown Techniques , Genes, Plant , MicroRNAs/metabolism , Molecular Sequence Data , Polyadenylation , RNA Cleavage , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Double-Stranded/chemistry , RNA, Plant/chemistry , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Small Interfering/genetics
11.
PLoS Pathog ; 8(3): e1002568, 2012.
Article in English | MEDLINE | ID: mdl-22396650

ABSTRACT

Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence.


Subject(s)
Oryza/virology , Picornaviridae/genetics , Plant Diseases/virology , Ribosomes/genetics , Tungrovirus/genetics , DNA, Viral , Genes, Plant , Host-Pathogen Interactions , Open Reading Frames/genetics , RNA, Viral , Ribosomes/metabolism , Transcription, Genetic
12.
Nucleic Acids Res ; 40(2): 594-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21930511

ABSTRACT

RNA-dependent RNA polymerase RDR6 is involved in the biogenesis of plant trans-acting siRNAs. This process is initiated by miRNA-directed and Argonaute (AGO) protein-mediated cleavage of TAS gene transcripts. One of the cleavage products is converted by RDR6 to double-stranded (ds)RNA, the substrate for Dicer-like 4 (DCL4). Interestingly, TAS3 transcript contains two target sites for miR390::AGO7 complexes, 5'-non-cleavable and 3'-cleavable. Here we show that RDR6-mediated synthesis of complementary RNA starts at a third nucleotide of the cleaved TAS3 transcript and is terminated by the miR390::AGO7 complex stably bound to the non-cleavable site. Thus, the resulting dsRNA has a short, 2-nt, 3'-overhang and a long, 220-nt, 5'-overhang of the template strand. The short, but not long, overhang is optimal for DCL4 binding, which ensures dsRNA processing from one end into phased siRNA duplexes with 2-nt 3'-overhangs.


Subject(s)
Arabidopsis Proteins/metabolism , MicroRNAs/metabolism , RNA, Complementary/biosynthesis , RNA, Small Interfering/metabolism , RNA-Dependent RNA Polymerase/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Complementary/chemistry , RNA, Double-Stranded/metabolism , Sequence Analysis, RNA , Templates, Genetic
13.
Nucleic Acids Res ; 39(12): 5003-14, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21378120

ABSTRACT

To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding regions.


Subject(s)
Arabidopsis/virology , Caulimovirus/genetics , RNA, Small Untranslated/biosynthesis , RNA, Viral/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Argonaute Proteins , Caulimovirus/physiology , DNA, Viral/biosynthesis , Mutation , Plant Diseases/virology , Ribonuclease III/genetics , Virus Replication
14.
Nucleic Acids Res ; 36(18): 5896-909, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18801846

ABSTRACT

Several RNA silencing pathways in plants restrict viral infections and are suppressed by distinct viral proteins. Here we show that the endogenous trans-acting (ta)siRNA pathway, which depends on Dicer-like (DCL) 4 and RNA-dependent RNA polymerase (RDR) 6, is suppressed by infection of Arabidopsis with Cauliflower mosaic virus (CaMV). This effect was associated with overaccumulation of unprocessed, RDR6-dependent precursors of tasiRNAs and is due solely to expression of the CaMV transactivator/viroplasmin (TAV) protein. TAV expression also impaired secondary, but not primary, siRNA production from a silenced transgene and increased accumulation of mRNAs normally silenced by the four known tasiRNA families and RDR6-dependent secondary siRNAs. Moreover, TAV expression upregulated DCL4, DRB4 and AGO7 that mediate tasiRNA biogenesis. Our findings suggest that TAV is a general inhibitor of silencing amplification that impairs DCL4-mediated processing of RDR6-dependent double-stranded RNA to siRNAs. The resulting deficiency in tasiRNAs and other RDR6-/DCL4-dependent siRNAs appears to trigger a feedback mechanism that compensates for the inhibitory effects.


Subject(s)
Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis/genetics , Arabidopsis/virology , RNA Interference , RNA, Small Interfering/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Trans-Activators/metabolism , Viral Proteins/metabolism , Arabidopsis/metabolism , Caulimovirus/metabolism , RNA Precursors/biosynthesis , RNA, Double-Stranded/biosynthesis , RNA, Small Interfering/chemistry , Ribonuclease III , Ribonucleases/metabolism , Transgenes
15.
Mol Plant Microbe Interact ; 20(12): 1545-54, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17990962

ABSTRACT

The Begomovirus transcriptional activator protein (TrAP/AC2/C2) is a multifunctional protein which activates the viral late gene promoters, suppresses gene silencing, and determines pathogenicity. To study TrAP-mediated transactivation of a stably integrated gene, we generated transgenic tobacco plants with a Mungbean yellow mosaic virus (MYMV) AV1 late gene promoter-driven reporter gene and supertransformed them with the MYMV TrAP gene driven by a strong 35S promoter. We obtained a single supertransformed plant with an intact 35S-TrAP gene that activated the reporter gene 2.5-fold. However, 10 of the 11 supertransformed plants did not have the TrAP region of the T-DNA, suggesting the likely toxicity of TrAP in plants. Upon transformation of wild-type tobacco plants with the TrAP gene, six of the seven transgenic plants obtained had truncated T-DNAs which lacked TrAP. One plant, which had the intact TrAP gene, did not express TrAP. The apparent toxic effect of the TrAP transgene was abolished by mutations in its nuclear-localization signal or zinc-finger domain and by deletion of its activation domain. Therefore, all three domains of TrAP, which are required for transactivation and suppression of gene silencing, also are needed for its toxic effect.


Subject(s)
Begomovirus/pathogenicity , Nicotiana/genetics , Plants, Genetically Modified/virology , Trans-Activators/physiology , Transgenes , Viral Proteins/metabolism , Begomovirus/genetics , Begomovirus/metabolism , Promoter Regions, Genetic , Nicotiana/virology , Trans-Activators/genetics , Viral Proteins/genetics
16.
Nucleic Acids Res ; 34(21): 6233-46, 2006.
Article in English | MEDLINE | ID: mdl-17090584

ABSTRACT

Like other eukaryotes, plants use DICER-LIKE (DCL) proteins as the central enzymes of RNA silencing, which regulates gene expression and mediates defense against viruses. But why do plants like Arabidopsis express four DCLs, a diversity unmatched by other kingdoms? Here we show that two nuclear DNA viruses (geminivirus CaLCuV and pararetrovirus CaMV) and a cytoplasmic RNA tobamovirus ORMV are differentially targeted by subsets of DCLs. DNA virus-derived small interfering RNAs (siRNAs) of specific size classes (21, 22 and 24 nt) are produced by all four DCLs, including DCL1, known to process microRNA precursors. Specifically, DCL1 generates 21 nt siRNAs from the CaMV leader region. In contrast, RNA virus infection is mainly affected by DCL4. While the four DCLs are partially redundant for CaLCuV-induced mRNA degradation, DCL4 in conjunction with RDR6 and HEN1 specifically facilitates extensive virus-induced silencing in new growth. Additionally, we show that CaMV infection impairs processing of endogenous RDR6-derived double-stranded RNA, while ORMV prevents HEN1-mediated methylation of small RNA duplexes, suggesting two novel viral strategies of silencing suppression. Our work highlights the complexity of virus interaction with host silencing pathways and suggests that DCL multiplicity helps mediate plant responses to diverse viral infections.


Subject(s)
Arabidopsis Proteins/metabolism , Gene Silencing , Plant Diseases/virology , Plant Viruses/genetics , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Caulimovirus/genetics , Geminiviridae/genetics , MicroRNAs/metabolism , Mutation , RNA, Double-Stranded/metabolism , RNA, Small Interfering/classification , RNA, Viral/classification , RNA, Viral/metabolism , Ribonuclease III/genetics , Tobamovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...