Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Vis ; 14: 2575-96, 2008.
Article in English | MEDLINE | ID: mdl-19122831

ABSTRACT

PURPOSE: Asymmetric cell division (ACD) is the fundamental mechanism underlying the generation of cellular diversity in invertebrates and vertebrates. During Drosophila neuroblast division, this process involves stabilization of the apical complex and interaction between the Inscuteable (Insc) and Partner of inscuteable (Pins) proteins. Both cell-intrinsic factors and cell-cell interactions seem to contribute to cell fate decisions in the retina. The Pins protein is known to play a major role in the asymmetric segregation of cell fate determinants during development of the central nervous system in general, but its role in asymmetric cell divisions and retinoblast cell fate has never been explored. The primary aim of this study was to determine the spatial distribution and time course of mouse homolog of Drosophila Partner of Inscuteable (mPins) expression in the developing and adult mouse eye. METHODS: The expression pattern of mPins was studied in the mouse eye from embryonic (E) stage E11.5 until adulthood, by semiquantitative RT-PCR, in situ hybridization, and immunohistochemistry. In addition, variations in mRNA and protein levels for mPins were analyzed in the developing postnatal and adult lens, by semiquantitative RT-PCR, western blot analysis, in situ hybridization, and immunohistochemistry. RESULTS: We detected mPins mRNA at early stages of mouse embryonic eye development, particularly in the neuroblastic layer. In early postnatal development, mPins mRNA was still detected in the neuroblastic layer, but also began to be detectable in the ganglion cell layer. Thereafter, mPins mRNA was found throughout the retina. This pattern was maintained in differentiated adult retina. Immunohistochemical studies showed that mPins protein was present in the neuroblastic layer and the ganglion cell layer during the early stages of postnatal retinal development. At these stages, mPins protein was colocalized with Numb protein, a marker of the ACD. At later postnatal stages, mPins protein was present in all retinal nuclear layers and in the inner plexiform layer. It continued to be detected in these layers in the differentiated retina; the outer plexiform layer and the photoreceptor inner segments also began to display positive immunostaining for mPins. In the adult retina, mPins was also detected in the retinal pigment epithelium and choroidal melanocytes. Throughout development, mPins protein was detected in nonretinal tissues, including the cornea, ciliary body, and lens. We focused our attention on lens development and showed that mPins protein was first detected at E14.5. The most striking results obtained concerned the lens, in which mPins protein distribution switched from the anterior to the posterior region of the lens during embryonic development. Interestingly, in the postnatal and adult lens, mPins protein was detected in all lens cells and fibers. CONCLUSIONS: We provide the first demonstration that mPins protein is expressed from embryonic stages until adulthood in the mouse eye. These results suggest that mPins plays important roles in eye development. This work provides preliminary evidence strongly supporting a role for mPins in the asymmetric division of retinoblasts, and in the structure and functions of adult mouse retina. However, the link between the presence of mPins in different ocular compartments and the possible occurrence of asymmetric cell divisions in these compartments remains to be clarified. Further studies are required to elucidate the in vitro and in vivo functions of mPins in the developing and adult human eye.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Eye/embryology , Eye/metabolism , Gene Expression Regulation, Developmental , Adaptor Proteins, Signal Transducing/metabolism , Animals , Animals, Newborn , Antibodies , Cell Differentiation , Ciliary Body/cytology , Ciliary Body/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Eye/cytology , Immunohistochemistry , In Situ Hybridization , Lens, Crystalline/cytology , Lens, Crystalline/embryology , Lens, Crystalline/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Protein Transport , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retina/cytology , Retina/embryology , Retina/metabolism
2.
Mol Vis ; 13: 1412-27, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17768378

ABSTRACT

PURPOSE: Musashi-1 (Msi1) is an RNA-binding protein produced in various types of stem cells including neural stem/progenitor cells and astroglial progenitor cells in the vertebrate central nervous system. Other RNA-binding proteins such as Pumilio-1, Pumilio-2, Staufen-1, and Staufen-2 have been characterized as potential markers of several types of stem or progenitor cells. We investigated the involvement of Msi1 in mouse eye development and adult mouse eye functions by analyzing the profile of Msi1 production in all ocular structures during development and adulthood. METHODS: We studied Msi1 production by in situ hybridization and immunohistochemistry of ocular tissue sections and by semi-quantitative RT-PCR and western blot analysis from the embryonic stage of 12.5 days post coitum (E12.5 dpc) when the first retinal ganglion cells (RGCs) begin to appear to the adult stage when all retinal cell types are present. RESULTS: Msi1 mRNA was present at all studied stages of eye development. Msi1 protein was detected in the primitive neuroblastic layer (NbL), the ganglion cell layer (GCL), and in all major differentiated neurons of postnatal developing and adult retinae. During postnatal developing stages, faint diffuse Msi1 protein staining is converted to a more specific distribution once mouse retina is fully differentiated. The most striking result of our study concerns the large amounts of Msi1 protein and mRNA in several unexpected sites of adult mouse eyes including the corneal epithelium and endothelium, stromal keratocytes, progenitor cells of the limbus, equatorial lens stem cells, differentiated lens epithelial cells, and differentiating lens fibers. Msi1 was also found in the pigmented and nonpigmented cells of the ciliary processes, the melanocytes of the ciliary body, the retinal pigment epithelium, differentiated retinal neurons, and most probably in the retinal glial cells such as Müller glial cells, astrocytes, and the oligodendocytes surrounding the axons of the optic nerve. Msi1 expression was detected in the outer plexiform layer, the inner plexiform layer, and the nerve fiber layer of fully differentiated adult retina. CONCLUSIONS: We provide here the first demonstration that the RNA-binding protein, Msi1, is produced in mouse eyes from embryonic stages until adulthood. The relationship between the presence of Msi1 in developing ocular compartments and the possible stem/progenitor cell characteristics of these compartments remains unclear. Finally, the expression of Msi1 in several different cell types in the adult eye is extremely intriguing and should lead to further attempts to unravel the role of Msi1 in cellular and subcellular RNA metabolism and in the control of translational processes in adult eye cells particularly in adult neuronal dendrites, axons, and synapses.


Subject(s)
Eye/embryology , Eye/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Animals, Newborn , Antibody Specificity , Eye/cytology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retina/metabolism
3.
Environ Monit Assess ; 99(1-3): 181-96, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15641381

ABSTRACT

The low-rainfall ecologies of the northern fringes of Nigeria are prone to desertification and sand dune activities that are phenomenal and extensive. Stabilization structures put in place by various governmental and non-governmental agencies to check desertification in northwestern Nigeria were evaluated with respect to efficiency, impact on soil development and yield of millet. The study focused on the active and stabilized sand dune formations in NW Nigeria. Various stabilization techniques were identified within Gidan Kaura (the study site) and results were compared with an unstabilized sand dune (control site). Results obtained indicated that the sand dunes within the study area are still active despite the numerous stabilization structures, some of which were established over 15 years ago. Shelterbelts were the most effective techniques in sand dune stabilization and soil development when properly sited across wind direction. Shelterbelts recorded significantly higher levels of pH, organic carbon, total nitrogen, exchangeable bases and micronutrients except for copper, when compared with all other treatments. The least effective of all the structures was mechanical fencing, probably due to the inadequate quantity of plant residues used in its construction. The impact of the various structures on the physical and chemical soil properties was evaluated for surface soils as were the structures on the yield of millet in stabilized dunes and non-dune areas. The results are discussed in depth in this paper.


Subject(s)
Conservation of Natural Resources/methods , Geology , Panicum/growth & development , Silicon Dioxide , Carbon/analysis , Desert Climate , Geological Phenomena , Nigeria , Particle Size , Silicon Dioxide/analysis , Soil/analysis , Trace Elements/analysis
4.
Metabolism ; 52(5): 586-9, 2003 May.
Article in English | MEDLINE | ID: mdl-12759888

ABSTRACT

Metformin (dimethylbiguanide) is an antihyperglycemic agent used in type 2 diabetes. Beyond its action on glycemic control, metformin exhibits other intrinsic effects that could play a role in prevention against diabetes complications. Some studies thus reported an improvement in the antioxidant status in patients treated with metformin. This might be in part related to its property to limit formation of advanced glycation end products (AGEs) and to decrease the overproduction of free radicals in diabetic subjects. The aim of this study was to investigate the in vitro ability of metformin to modulate the action of reactive oxygen species (ROS) generated either by water gamma radiolysis or by stimulated human leukocytes. Our results showed that metformin at pharmacologically relevant concentrations was in vitro able to scavenge hydroxyl ((.)OH) but not superoxide (O(.-)(2)) free radicals and that hydrogen peroxide did not react with metformin. Nevertheless, when polymorphonuclear cells (PMN) are stimulated by phorbol myristate acetate (PMA), or above all by formyl methionine leucyl phenylalanine (fMLP), a systematic (although nonsignificant) decrease of the ROS-induced chimiluminescence (CL) was observed. These results suggest that metformin could directly scavenge ROS or indirectly act by modulating the intracellular production of superoxide anion, of which NADPH oxidase constitutes the major source. This could contribute to the additional benefits of metformin, especially those related to the improvement in the cardiovascular outcomes in diabetes.


Subject(s)
Free Radicals/metabolism , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Oxidative Stress/drug effects , Free Radicals/radiation effects , Gamma Rays , Humans , In Vitro Techniques , Leukocytes/drug effects , Leukocytes/metabolism , Luminescent Measurements , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Spectrophotometry, Ultraviolet , Tetradecanoylphorbol Acetate/pharmacology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...