Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6686): eadk1291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422154

ABSTRACT

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.


Subject(s)
Cognition , Neuronal Plasticity , ras GTPase-Activating Proteins , Animals , Humans , Mice , Autistic Disorder/genetics , GTPase-Activating Proteins/genetics , Learning , Mice, Knockout , Neuronal Plasticity/genetics , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism , Catalysis
2.
Proc Natl Acad Sci U S A ; 120(37): e2308891120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669379

ABSTRACT

SYNGAP1 is a Ras-GTPase-activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDDs). These mutations are highly penetrant and cause SYNGAP1-related intellectual disability (SRID), an NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances. Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning, and memory and have seizures. However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A. While reduction in Syngap1 mRNA varies from 30 to 50% depending on the specific mutation, both models show ~50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder.


Subject(s)
Epilepsy , Intellectual Disability , Humans , Animals , Mice , Codon, Nonsense , Seizures , Brain , Disease Models, Animal , Memory Disorders , ras GTPase-Activating Proteins
3.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37293116

ABSTRACT

SYNGAP1 is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDD). These mutations are highly penetrant and cause SYNGAP1 -related intellectual disability (SRID), a NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances (1-5). Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function (6-11), and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning and memory, and have seizures (9, 12-14). However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A . While reduction in Syngap1 mRNA varies from 30-50% depending on the specific mutation, both models show ∼50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder. Significance Statement: SYNGAP1 is a protein enriched at excitatory synapses in the brain that is an important regulator of synapse structure and function. SYNGAP1 mutations cause SYNGAP1 -related intellectual disability (SRID), a neurodevelopmental disorder with cognitive impairment, social deficits, seizures, and sleep disturbances. To explore how SYNGAP1 mutations found in humans lead to disease, we generated the first knock-in mouse models with causal SRID variants: one with a frameshift mutation and a second with an intronic mutation that creates a cryptic splice acceptor site. Both models show decreased Syngap1 mRNA and Syngap1 protein and recapitulate key features of SRID including hyperactivity and impaired working memory. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies. Highlights: Two mouse models with SYNGAP1 -related intellectual disability (SRID) mutations found in humans were generated: one with a frameshift mutation that results in a premature stop codon and the other with an intronic mutation resulting in a cryptic splice acceptor site and premature stop codon. Both SRID mouse models show 35∼50% reduction in mRNA and ∼50% reduction in Syngap1 protein.Both SRID mouse models display deficits in synaptic plasticity and behavioral phenotypes found in people. RNA-seq confirmed cryptic splice acceptor activity in one SRID mouse model and revealed broad transcriptional changes also identified in Syngap1 +/- mice. Novel SRID mouse models generated here provide a resource and establish a framework for development of future therapeutic intervention.

4.
Neuron ; 93(1): 48-56, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27989458

ABSTRACT

Development of proper cortical circuits requires an interaction of sensory experience and genetic programs. Little is known of how experience and specific transcription factors interact to determine the development of specific neocortical circuits. Here, we demonstrate that the activity-dependent transcription factor, Myocyte enhancer factor-2C (Mef2c), differentially regulates development of local versus long-range excitatory synaptic inputs onto layer 2/3 neurons in the somatosensory neocortex in vivo. Postnatal, postsynaptic deletion of Mef2c in a sparse population of L2/3 neurons suppressed development of excitatory synaptic connections from all local input pathways tested. In the same cell population, Mef2c deletion promoted the strength of excitatory inputs originating from contralateral neocortex. Both the synapse promoting and synapse suppressing effects of Mef2c deletion required normal whisking experience. These results reveal a role of Mef2c in experience-dependent development of specific sensory neocortical circuits.


Subject(s)
Neocortex/metabolism , Pyramidal Cells/metabolism , Somatosensory Cortex/metabolism , Synapses/metabolism , Animals , Gene Knockdown Techniques , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice , Mice, Knockout , Neocortex/growth & development , Neurons/metabolism , RNA, Messenger/metabolism , Somatosensory Cortex/growth & development , Vibrissae
5.
Elife ; 52016 10 25.
Article in English | MEDLINE | ID: mdl-27779093

ABSTRACT

Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) - a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice.


Subject(s)
Behavior, Animal , Neurodevelopmental Disorders/physiopathology , Synapses/physiology , Animals , Autistic Disorder/physiopathology , Cerebral Cortex/embryology , Gene Knockdown Techniques , Hippocampus/embryology , Intellectual Disability/physiopathology , MEF2 Transcription Factors/metabolism , Mice
6.
Genes Dev ; 29(20): 2081-96, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26494785

ABSTRACT

Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication.


Subject(s)
Autism Spectrum Disorder/physiopathology , Corpus Striatum/physiopathology , Forkhead Transcription Factors/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Animals , Autism Spectrum Disorder/genetics , Cells, Cultured , Disease Models, Animal , Forkhead Transcription Factors/genetics , Gene Expression Regulation/genetics , Haploinsufficiency , Hippocampus/physiopathology , Humans , Mice , Mice, Inbred C57BL , Mutation , Neurons/pathology , Repressor Proteins/genetics , Verbal Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...