Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Diagn Res ; 11(8): BC24-BC28, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28969114

ABSTRACT

INTRODUCTION: Dysfunction of redox homeostasis has been implicated in many pathological conditions. An imbalance of pro- and anti-oxidants have been observed in Tuberculosis (TB) and its co-morbidities especially HIV/AIDS. The pro inflammatory milieu in either condition aggravates the physiological balance of the redox mechanisms. The present study therefore focuses on assessing the redox status of patients suffering from TB and HIV-TB co-infection. AIM: To assess the oxidative stress markers in the HIV-TB and TB study cohort. MATERIALS AND METHODS: The current prospective study was conducted in Haffkine Institute, Parel, Maharashtra, India, during January 2013 to December 2015. Blood samples from 50 patients each suffering from active TB and HIV-TB co-infection were collected from Seth G.S.Medical College and KEM Hospital Mumbai and Group of Tuberculosis Hospital, Sewree Mumbai. Samples were processed and the experiments were carried out at the Department of Biochemistry, Haffkine Institute. Samples from 50 healthy volunteers were used as controls. Serum was assessed for pro-oxidant markers such as Nitric Oxide (NO), Thiobarbituric Acid Reactive Species (TBARS), C-Reactive Protein (CRP), superoxide anion. Antioxidant markers such as catalase and Superoxide Dismutase (SOD) were assessed. Total serum protein, was also assessed. RESULTS: Among the pro-oxidants, serum NO levels were decreased in TB group while no change was seen in HIV-TB group. TBARS and CRP levels showed significant increase in both groups; superoxide anion increased significantly in HIV-TB group. Catalase levels showed decreased activities in TB group. SOD activity significantly increased in HIV-TB but not in TB group. The total serum proteins were significantly increased in HIV-TB and TB groups. The values of Control cohort were with the normal reference ranges. CONCLUSION: In the present study, we found the presence of oxidative stress to be profound in the TB and HIV-TB co-infection population.

2.
Indian J Virol ; 24(2): 220-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24426279

ABSTRACT

Influenza is a serious respiratory illness which can be debilitating and cause complications that lead to hospitalization and death. Although influenza vaccine can prevent influenza virus infection, the only therapeutic options to treat influenza virus infection are antiviral agents. Given temporal and geographic changes and the shifts in antiviral drug resistance among influenza viruses, it is time to consider natural antiviral agents against influenza virus. Jatropha curcas is known for various medicinal uses. Its antimicrobial, anti-cancer and anti-HIV activity has been well recognized. Because of its broad-spectrum activity, we investigated aqueous and methanol leaf extracts for cytotoxicity and its potential to inhibit hemagglutinin protein of influenza virus. The bioactive compounds from leaf extracts were characterized by high-performance thinlayer chromatography which revealed the presence of major phytochemicals including flavonoids, saponins and tannins. The cytotoxic concentration 50 for aqueous and methanol extracts were determined using trypan blue dye exclusion assay. Inhibition of hemagglutinin protein was assessed using minimal cytotoxic concentrations of the extracts and 10(2.5) TCID50 (64 HA titre) of the Influenza A (H1N1) virus with different exposure studies using hemagglutination assay. Aqueous and methanol extracts were found to be non toxic to Madin darby canine kidney cells below concentration of 15.57 and 33.62 mg/mL for respectively. Inhibition of hemagglutinin was studied using reducing hemagglutination titre which confirmed that the J. curcas extracts have direct effect on the process of virus adsorption leading to its inhibition. Our results provide the information which shows the potential of Jatropha extracts in the treatment of influenza A (H1N1) virus infection. With an established reduced toxicity and prevention of infection by inhibiting hemagglutinin protein, these extracts and its derivatives may be further developed as broad spectrum anti-influenza drugs for prevention and treatment of infections by different types of influenza viruses with further mechanistic studies on anti-influenza.

SELECTION OF CITATIONS
SEARCH DETAIL
...