Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
NPJ Precis Oncol ; 8(1): 137, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942998

ABSTRACT

Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we developed an artificial intelligence (AI) algorithm, that assigns an Oral Malignant Transformation (OMT) risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs). Our AI pipeline leverages an in-house segmentation model to detect and segment both nuclei and epithelium. Subsequently, a shallow neural network utilises interpretable morphological and spatial features, emulating histological markers, to predict progression. We conducted internal cross-validation on our development cohort (Sheffield; n = 193 cases) and independent validation on two external cohorts (Birmingham and Belfast; n = 89 cases). On external validation, the proposed OMTscore achieved an AUROC = 0.75 (Recall = 0.92) in predicting OED progression, outperforming other grading systems (Binary: AUROC = 0.72, Recall = 0.85). Survival analyses showed the prognostic value of our OMTscore (C-index = 0.60, p = 0.02), compared to WHO (C-index = 0.64, p = 0.003) and binary grades (C-index = 0.65, p < 0.001). Nuclear analyses elucidated the presence of peri-epithelial and intra-epithelial lymphocytes in highly predictive patches of transforming cases (p < 0.001). This is the first study to propose a completely automated, explainable, and externally validated algorithm for predicting OED transformation. Our algorithm shows comparable-to-human-level performance, offering a promising solution to the challenges of grading OED in routine clinical practice.

2.
Med Image Anal ; 96: 103203, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810517

ABSTRACT

The classification of gigapixel Whole Slide Images (WSIs) is an important task in the emerging area of computational pathology. There has been a surge of interest in deep learning models for WSI classification with clinical applications such as cancer detection or prediction of cellular mutations. Most supervised methods require expensive and labor-intensive manual annotations by expert pathologists. Weakly supervised Multiple Instance Learning (MIL) methods have recently demonstrated excellent performance; however, they still require large-scale slide-level labeled training datasets that require a careful inspection of each slide by an expert pathologist. In this work, we propose a fully unsupervised WSI classification algorithm based on mutual transformer learning. The instances (i.e., patches) from gigapixel WSIs are transformed into a latent space and then inverse-transformed to the original space. Using the transformation loss, pseudo labels are generated and cleaned using a transformer label cleaner. The proposed transformer-based pseudo-label generator and cleaner modules mutually train each other iteratively in an unsupervised manner. A discriminative learning mechanism is introduced to improve normal versus cancerous instance labeling. In addition to the unsupervised learning, we demonstrate the effectiveness of the proposed framework for weakly supervised learning and cancer subtype classification as downstream analysis. Extensive experiments on four publicly available datasets show better performance of the proposed algorithm compared to the existing state-of-the-art methods.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted , Humans , Image Interpretation, Computer-Assisted/methods , Unsupervised Machine Learning , Deep Learning , Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods
3.
Med Image Anal ; 94: 103132, 2024 May.
Article in English | MEDLINE | ID: mdl-38442527

ABSTRACT

Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers. However, manual mitosis counting is tedious and time-consuming. In addition, variation in the appearance of mitotic figures causes a high degree of discordance among pathologists. With advances in deep learning models, several automatic mitosis detection algorithms have been proposed but they are sensitive to domain shift often seen in histology images. We propose a robust and efficient two-stage mitosis detection framework, which comprises mitosis candidate segmentation (Detecting Fast) and candidate refinement (Detecting Slow) stages. The proposed candidate segmentation model, termed EUNet, is fast and accurate due to its architectural design. EUNet can precisely segment candidates at a lower resolution to considerably speed up candidate detection. Candidates are then refined using a deeper classifier network, EfficientNet-B7, in the second stage. We make sure both stages are robust against domain shift by incorporating domain generalization methods. We demonstrate state-of-the-art performance and generalizability of the proposed model on the three largest publicly available mitosis datasets, winning the two mitosis domain generalization challenge contests (MIDOG21 and MIDOG22). Finally, we showcase the utility of the proposed algorithm by processing the TCGA breast cancer cohort (1,124 whole-slide images) to generate and release a repository of more than 620K potential mitotic figures (not exhaustively validated).


Subject(s)
Breast Neoplasms , Mitosis , Humans , Female , Algorithms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Histological Techniques , Image Processing, Computer-Assisted/methods
4.
Histopathology ; 84(5): 847-862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38233108

ABSTRACT

AIMS: To conduct a definitive multicentre comparison of digital pathology (DP) with light microscopy (LM) for reporting histopathology slides including breast and bowel cancer screening samples. METHODS: A total of 2024 cases (608 breast, 607 GI, 609 skin, 200 renal) were studied, including 207 breast and 250 bowel cancer screening samples. Cases were examined by four pathologists (16 study pathologists across the four speciality groups), using both LM and DP, with the order randomly assigned and 6 weeks between viewings. Reports were compared for clinical management concordance (CMC), meaning identical diagnoses plus differences which do not affect patient management. Percentage CMCs were computed using logistic regression models with crossed random-effects terms for case and pathologist. The obtained percentage CMCs were referenced to 98.3% calculated from previous studies. RESULTS: For all cases LM versus DP comparisons showed the CMC rates were 99.95% [95% confidence interval (CI) = 99.90-99.97] and 98.96 (95% CI = 98.42-99.32) for cancer screening samples. In speciality groups CMC for LM versus DP showed: breast 99.40% (99.06-99.62) overall and 96.27% (94.63-97.43) for cancer screening samples; [gastrointestinal (GI) = 99.96% (99.89-99.99)] overall and 99.93% (99.68-99.98) for bowel cancer screening samples; skin 99.99% (99.92-100.0); renal 99.99% (99.57-100.0). Analysis of clinically significant differences revealed discrepancies in areas where interobserver variability is known to be high, in reads performed with both modalities and without apparent trends to either. CONCLUSIONS: Comparing LM and DP CMC, overall rates exceed the reference 98.3%, providing compelling evidence that pathologists provide equivalent results for both routine and cancer screening samples irrespective of the modality used.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Pathology, Clinical , Humans , Early Detection of Cancer , Image Interpretation, Computer-Assisted/methods , Microscopy/methods , Pathology, Clinical/methods , Female , Multicenter Studies as Topic
5.
Med Image Anal ; 93: 103071, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199068

ABSTRACT

Colorectal cancer (CRC) is a primary global health concern, and identifying the molecular pathways, genetic subtypes, and mutations associated with CRC is crucial for precision medicine. However, traditional measurement techniques such as gene sequencing are costly and time-consuming, while most deep learning methods proposed for this task lack interpretability. This study offers a new approach to enhance the state-of-the-art deep learning methods for molecular pathways and key mutation prediction by incorporating cell network information. We build cell graphs with nuclei as nodes and nuclei connections as edges of the network and leverage Social Network Analysis (SNA) measures to extract abstract, perceivable, and interpretable features that explicitly describe the cell network characteristics in an image. Our approach does not rely on precise nuclei segmentation or feature extraction, is computationally efficient, and is easily scalable. In this study, we utilize the TCGA-CRC-DX dataset, comprising 499 patients and 502 diagnostic slides from primary colorectal tumours, sourced from 36 distinct medical centres in the United States. By incorporating the SNA features alongside deep features in two multiple instance learning frameworks, we demonstrate improved performance for chromosomal instability (CIN), hypermutated tumour (HM), TP53 gene, BRAF gene, and Microsatellite instability (MSI) status prediction tasks (2.4%-4% and 7-8.8% improvement in AUROC and AUPRC on average). Additionally, our method achieves outstanding performance on MSI prediction in an external PAIP dataset (99% AUROC and 98% AUPRC), demonstrating its generalizability. Our findings highlight the discrimination power of SNA features and how they can be beneficial to deep learning models' performance and provide insights into the correlation of cell network profiles with molecular pathways and key mutations.


Subject(s)
Colorectal Neoplasms , Deep Learning , Humans , Proto-Oncogene Proteins B-raf/genetics , Social Network Analysis , Mutation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Microsatellite Instability
6.
NPJ Precis Oncol ; 8(1): 5, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184744

ABSTRACT

Drug sensitivity prediction models can aid in personalising cancer therapy, biomarker discovery, and drug design. Such models require survival data from randomised controlled trials which can be time consuming and expensive. In this proof-of-concept study, we demonstrate for the first time that deep learning can link histological patterns in whole slide images (WSIs) of Haematoxylin & Eosin (H&E) stained breast cancer sections with drug sensitivities inferred from cell lines. We employ patient-wise drug sensitivities imputed from gene expression-based mapping of drug effects on cancer cell lines to train a deep learning model that predicts patients' sensitivity to multiple drugs from WSIs. We show that it is possible to use routine WSIs to predict the drug sensitivity profile of a cancer patient for a number of approved and experimental drugs. We also show that the proposed approach can identify cellular and histological patterns associated with drug sensitivity profiles of cancer patients.

7.
J Pathol Clin Res ; 10(1): e346, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873865

ABSTRACT

Early-stage estrogen receptor positive and human epidermal growth factor receptor negative (ER+/HER2-) luminal breast cancer (BC) is quite heterogeneous and accounts for about 70% of all BCs. Ki67 is a proliferation marker that has a significant prognostic value in luminal BC despite the challenges in its assessment. There is increasing evidence that spatial colocalization, which measures the evenness of different types of cells, is clinically important in several types of cancer. However, reproducible quantification of intra-tumor spatial heterogeneity remains largely unexplored. We propose an automated pipeline for prognostication of luminal BC based on the analysis of spatial distribution of Ki67 expression in tumor cells using a large well-characterized cohort (n = 2,081). The proposed Ki67 colocalization (Ki67CL) score can stratify ER+/HER2- BC patients with high significance in terms of BC-specific survival (p < 0.00001) and distant metastasis-free survival (p = 0.0048). Ki67CL score is shown to be highly significant compared with the standard Ki67 index. In addition, we show that the proposed Ki67CL score can help identify luminal BC patients who can potentially benefit from adjuvant chemotherapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Prognosis , Ki-67 Antigen , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Artificial Intelligence
8.
IEEE J Biomed Health Inform ; 28(3): 1161-1172, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37878422

ABSTRACT

We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzhen (China). The competition required participants to automatically assess the number of lymphocytes, in particular T-cells, in images of colon, breast, and prostate cancer stained with CD3 and CD8 immunohistochemistry. Differently from other challenges setup in medical image analysis, LYSTO participants were solely given a few hours to address this problem. In this paper, we describe the goal and the multi-phase organization of the hackathon; we describe the proposed methods and the on-site results. Additionally, we present post-competition results where we show how the presented methods perform on an independent set of lung cancer slides, which was not part of the initial competition, as well as a comparison on lymphocyte assessment between presented methods and a panel of pathologists. We show that some of the participants were capable to achieve pathologist-level performance at lymphocyte assessment. After the hackathon, LYSTO was left as a lightweight plug-and-play benchmark dataset on grand-challenge website, together with an automatic evaluation platform.


Subject(s)
Benchmarking , Prostatic Neoplasms , Male , Humans , Lymphocytes , Breast , China
9.
Mod Pathol ; 37(3): 100416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154653

ABSTRACT

In recent years, artificial intelligence (AI) has demonstrated exceptional performance in mitosis identification and quantification. However, the implementation of AI in clinical practice needs to be evaluated against the existing methods. This study is aimed at assessing the optimal method of using AI-based mitotic figure scoring in breast cancer (BC). We utilized whole slide images from a large cohort of BC with extended follow-up comprising a discovery (n = 1715) and a validation (n = 859) set (Nottingham cohort). The Cancer Genome Atlas of breast invasive carcinoma (TCGA-BRCA) cohort (n = 757) was used as an external test set. Employing automated mitosis detection, the mitotic count was assessed using 3 different methods, the mitotic count per tumor area (MCT; calculated by dividing the number of mitotic figures by the total tumor area), the mitotic index (MI; defined as the average number of mitotic figures per 1000 malignant cells), and the mitotic activity index (MAI; defined as the number of mitotic figures in 3 mm2 area within the mitotic hotspot). These automated metrics were evaluated and compared based on their correlation with the well-established visual scoring method of the Nottingham grading system and Ki67 score, clinicopathologic parameters, and patient outcomes. AI-based mitotic scores derived from the 3 methods (MCT, MI, and MAI) were significantly correlated with the clinicopathologic characteristics and patient survival (P < .001). However, the mitotic counts and the derived cutoffs varied significantly between the 3 methods. Only MAI and MCT were positively correlated with the gold standard visual scoring method used in Nottingham grading system (r = 0.8 and r = 0.7, respectively) and Ki67 scores (r = 0.69 and r = 0.55, respectively), and MAI was the only independent predictor of survival (P < .05) in multivariate Cox regression analysis. For clinical applications, the optimum method of scoring mitosis using AI needs to be considered. MAI can provide reliable and reproducible results and can accurately quantify mitotic figures in BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Ki-67 Antigen , Artificial Intelligence , Mitosis , Mitotic Index
10.
Med Image Anal ; 92: 103047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157647

ABSTRACT

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Cell Nucleus/pathology , Histological Techniques/methods
11.
Med Image Anal ; 91: 102997, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37866169

ABSTRACT

Semantic segmentation of various tissue and nuclei types in histology images is fundamental to many downstream tasks in the area of computational pathology (CPath). In recent years, Deep Learning (DL) methods have been shown to perform well on segmentation tasks but DL methods generally require a large amount of pixel-wise annotated data. Pixel-wise annotation sometimes requires expert's knowledge and time which is laborious and costly to obtain. In this paper, we present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge by exploiting a large amount of unlabelled data for model training thus alleviating the need for a large annotated dataset. However, SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data. We propose an SSL method that learns robust features from both labelled and unlabelled images by enforcing consistency against varying contexts and feature perturbations. The proposed method incorporates context-aware consistency by contrasting pairs of overlapping images in a pixel-wise manner from changing contexts resulting in robust and context invariant features. We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence. Finally, entropy minimisation is employed to further boost the confidence of the final prediction maps from unlabelled data. We conduct an extensive set of experiments on two publicly available large datasets (BCSS and MoNuSeg) and show superior performance compared to the state-of-the-art methods.


Subject(s)
Cell Nucleus , Semantics , Humans , Entropy , Histological Techniques , Supervised Machine Learning , Image Processing, Computer-Assisted
12.
Med Image Anal ; 91: 102995, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898050

ABSTRACT

Automated synthesis of histology images has several potential applications in computational pathology. However, no existing method can generate realistic tissue images with a bespoke cellular layout or user-defined histology parameters. In this work, we propose a novel framework called SynCLay (Synthesis from Cellular Layouts) that can construct realistic and high-quality histology images from user-defined cellular layouts along with annotated cellular boundaries. Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells (e.g., neutrophils, lymphocytes, epithelial cells and others). SynCLay generated synthetic images can be helpful in studying the role of different types of cells present in the tumor microenvironment. Additionally, they can assist in balancing the distribution of cellular counts in tissue images for designing accurate cellular composition predictors by minimizing the effects of data imbalance. We train SynCLay in an adversarial manner and integrate a nuclear segmentation and classification model in its training to refine nuclear structures and generate nuclear masks in conjunction with synthetic images. During inference, we combine the model with another parametric model for generating colon images and associated cellular counts as annotations given the grade of differentiation and cellularities (cell densities) of different cells. We assess the generated images quantitatively using the Frechet Inception Distance and report on feedback from trained pathologists who assigned realism scores to a set of images generated by the framework. The average realism score across all pathologists for synthetic images was as high as that for the real images. Moreover, with the assistance from pathologists, we showcase the ability of the generated images to accurately differentiate between benign and malignant tumors, thus reinforcing their reliability. We demonstrate that the proposed framework can be used to add new cells to a tissue images and alter cellular positions. We also show that augmenting limited real data with the synthetic data generated by our framework can significantly boost prediction performance of the cellular composition prediction task. The implementation of the proposed SynCLay framework is available at https://github.com/Srijay/SynCLay-Framework.


Subject(s)
Colon , Epithelial Cells , Humans , Reproducibility of Results , Cell Count , Histological Techniques , Image Processing, Computer-Assisted
13.
Cancers (Basel) ; 15(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38136336

ABSTRACT

BACKGROUND: Locoregional recurrence of nasopharyngeal carcinoma (NPC) occurs in 10% to 50% of cases following primary treatment. However, the current main prognostic markers for NPC, both stage and plasma Epstein-Barr virus DNA, are not sensitive to locoregional recurrence. METHODS: We gathered 385 whole-slide images (WSIs) from haematoxylin and eosin (H&E)-stained NPC sections (n = 367 cases), which were collected from Sun Yat-sen University Cancer Centre. We developed a deep learning algorithm to detect tumour nuclei and lymphocyte nuclei in WSIs, followed by density-based clustering to quantify the tumour-infiltrating lymphocytes (TILs) into 12 scores. The Random Survival Forest model was then trained on the TILs to generate risk score. RESULTS: Based on Kaplan-Meier analysis, the proposed methods were able to stratify low- and high-risk NPC cases in a validation set of locoregional recurrence with a statically significant result (p < 0.001). This finding was also found in distant metastasis-free survival (p < 0.001), progression-free survival (p < 0.001), and regional recurrence-free survival (p < 0.05). Furthermore, in both univariate analysis (HR: 1.58, CI: 1.13-2.19, p < 0.05) and multivariate analysis (HR:1.59, CI: 1.11-2.28, p < 0.05), we also found that our methods demonstrated a strong prognostic value for locoregional recurrence. CONCLUSION: The proposed novel digital markers could potentially be utilised to assist treatment decisions in cases of NPC.

14.
Cell Rep Med ; 4(12): 101313, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118424

ABSTRACT

Identification of the gene expression state of a cancer patient from routine pathology imaging and characterization of its phenotypic effects have significant clinical and therapeutic implications. However, prediction of expression of individual genes from whole slide images (WSIs) is challenging due to co-dependent or correlated expression of multiple genes. Here, we use a purely data-driven approach to first identify groups of genes with co-dependent expression and then predict their status from WSIs using a bespoke graph neural network. These gene groups allow us to capture the gene expression state of a patient with a small number of binary variables that are biologically meaningful and carry histopathological insights for clinical and therapeutic use cases. Prediction of gene expression state based on these gene groups allows associating histological phenotypes (cellular composition, mitotic counts, grading, etc.) with underlying gene expression patterns and opens avenues for gaining biological insights from routine pathology imaging directly.


Subject(s)
Breast Neoplasms , Gene Expression Profiling , Humans , Female , Transcriptome/genetics , Neural Networks, Computer , Phenotype , Breast Neoplasms/genetics
15.
NPJ Precis Oncol ; 7(1): 122, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968376

ABSTRACT

Breast cancer (BC) grade is a well-established subjective prognostic indicator of tumour aggressiveness. Tumour heterogeneity and subjective assessment result in high degree of variability among observers in BC grading. Here we propose an objective Haematoxylin & Eosin (H&E) image-based prognostic marker for early-stage luminal/Her2-negative BReAst CancEr that we term as the BRACE marker. The proposed BRACE marker is derived from AI based assessment of heterogeneity in BC at a detailed level using the power of deep learning. The prognostic ability of the marker is validated in two well-annotated cohorts (Cohort-A/Nottingham: n = 2122 and Cohort-B/Coventry: n = 311) on early-stage luminal/HER2-negative BC patients treated with endocrine therapy and with long-term follow-up. The BRACE marker is able to stratify patients for both distant metastasis free survival (p = 0.001, C-index: 0.73) and BC specific survival (p < 0.0001, C-index: 0.84) showing comparable prediction accuracy to Nottingham Prognostic Index and Magee scores, which are both derived from manual histopathological assessment, to identify luminal BC patients that may be likely to benefit from adjuvant chemotherapy.

16.
Lancet Digit Health ; 5(11): e786-e797, 2023 11.
Article in English | MEDLINE | ID: mdl-37890902

ABSTRACT

BACKGROUND: Histopathological examination is a crucial step in the diagnosis and treatment of many major diseases. Aiming to facilitate diagnostic decision making and improve the workload of pathologists, we developed an artificial intelligence (AI)-based prescreening tool that analyses whole-slide images (WSIs) of large-bowel biopsies to identify typical, non-neoplastic, and neoplastic biopsies. METHODS: This retrospective cohort study was conducted with an internal development cohort of slides acquired from a hospital in the UK and three external validation cohorts of WSIs acquired from two hospitals in the UK and one clinical laboratory in Portugal. To learn the differential histological patterns from digitised WSIs of large-bowel biopsy slides, our proposed weakly supervised deep-learning model (Colorectal AI Model for Abnormality Detection [CAIMAN]) used slide-level diagnostic labels and no detailed cell or region-level annotations. The method was developed with an internal development cohort of 5054 biopsy slides from 2080 patients that were labelled with corresponding diagnostic categories assigned by pathologists. The three external validation cohorts, with a total of 1536 slides, were used for independent validation of CAIMAN. Each WSI was classified into one of three classes (ie, typical, atypical non-neoplastic, and atypical neoplastic). Prediction scores of image tiles were aggregated into three prediction scores for the whole slide, one for its likelihood of being typical, one for its likelihood of being non-neoplastic, and one for its likelihood of being neoplastic. The assessment of the external validation cohorts was conducted by the trained and frozen CAIMAN model. To evaluate model performance, we calculated area under the convex hull of the receiver operating characteristic curve (AUROC), area under the precision-recall curve, and specificity compared with our previously published iterative draw and rank sampling (IDaRS) algorithm. We also generated heat maps and saliency maps to analyse and visualise the relationship between the WSI diagnostic labels and spatial features of the tissue microenvironment. The main outcome of this study was the ability of CAIMAN to accurately identify typical and atypical WSIs of colon biopsies, which could potentially facilitate automatic removing of typical biopsies from the diagnostic workload in clinics. FINDINGS: A randomly selected subset of all large bowel biopsies was obtained between Jan 1, 2012, and Dec 31, 2017. The AI training, validation, and assessments were done between Jan 1, 2021, and Sept 30, 2022. WSIs with diagnostic labels were collected between Jan 1 and Sept 30, 2022. Our analysis showed no statistically significant differences across prediction scores from CAIMAN for typical and atypical classes based on anatomical sites of the biopsy. At 0·99 sensitivity, CAIMAN (specificity 0·5592) was more accurate than an IDaRS-based weakly supervised WSI-classification pipeline (0·4629) in identifying typical and atypical biopsies on cross-validation in the internal development cohort (p<0·0001). At 0·99 sensitivity, CAIMAN was also more accurate than IDaRS for two external validation cohorts (p<0·0001), but not for a third external validation cohort (p=0·10). CAIMAN provided higher specificity than IDaRS at some high-sensitivity thresholds (0·7763 vs 0·6222 for 0·95 sensitivity, 0·7126 vs 0·5407 for 0·97 sensitivity, and 0·5615 vs 0·3970 for 0·99 sensitivity on one of the external validation cohorts) and showed high classification performance in distinguishing between neoplastic biopsies (AUROC 0·9928, 95% CI 0·9927-0·9929), inflammatory biopsies (0·9658, 0·9655-0·9661), and atypical biopsies (0·9789, 0·9786-0·9792). On the three external validation cohorts, CAIMAN had AUROC values of 0·9431 (95% CI 0·9165-0·9697), 0·9576 (0·9568-0·9584), and 0·9636 (0·9615-0·9657) for the detection of atypical biopsies. Saliency maps supported the representation of disease heterogeneity in model predictions and its association with relevant histological features. INTERPRETATION: CAIMAN, with its high sensitivity in detecting atypical large-bowel biopsies, might be a promising improvement in clinical workflow efficiency and diagnostic decision making in prescreening of typical colorectal biopsies. FUNDING: The Pathology Image Data Lake for Analytics, Knowledge and Education Centre of Excellence; the UK Government's Industrial Strategy Challenge Fund; and Innovate UK on behalf of UK Research and Innovation.


Subject(s)
Artificial Intelligence , Colorectal Neoplasms , Humans , Portugal , Retrospective Studies , Biopsy , United Kingdom , Tumor Microenvironment
17.
J Med Syst ; 47(1): 99, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715855

ABSTRACT

Federated learning (FL), a relatively new area of research in medical image analysis, enables collaborative learning of a federated deep learning model without sharing the data of participating clients. In this paper, we propose FedDropoutAvg, a new federated learning approach for detection of tumor in images of colon tissue slides. The proposed method leverages the power of dropout, a commonly employed scheme to avoid overfitting in neural networks, in both client selection and federated averaging processes. We examine FedDropoutAvg against other FL benchmark algorithms for two different image classification tasks using a publicly available multi-site histopathology image dataset. We train and test the proposed model on a large dataset consisting of 1.2 million image tiles from 21 different sites. For testing the generalization of all models, we select held-out test sets from sites that were not used during training. We show that the proposed approach outperforms other FL methods and reduces the performance gap (to less than 3% in terms of AUC on independent test sites) between FL and a central deep learning model that requires all data to be shared for centralized training, demonstrating the potential of the proposed FedDropoutAvg model to be more generalizable than other state-of-the-art federated models. To the best of our knowledge, ours is the first study to effectively utilize the dropout strategy in a federated setting for tumor detection in histology images.


Subject(s)
Algorithms , Benchmarking , Humans , Colon/diagnostic imaging , Knowledge , Neural Networks, Computer
18.
Br J Cancer ; 129(10): 1599-1607, 2023 11.
Article in English | MEDLINE | ID: mdl-37758836

ABSTRACT

BACKGROUND: Oral epithelial dysplasia (OED) is the precursor to oral squamous cell carcinoma which is amongst the top ten cancers worldwide. Prognostic significance of conventional histological features in OED is not well established. Many additional histological abnormalities are seen in OED, but are insufficiently investigated, and have not been correlated to clinical outcomes. METHODS: A digital quantitative analysis of epithelial cellularity, nuclear geometry, cytoplasm staining intensity and epithelial architecture/thickness is conducted on 75 OED whole-slide images (252 regions of interest) with feature-specific comparisons between grades and against non-dysplastic/control cases. Multivariable models were developed to evaluate prediction of OED recurrence and malignant transformation. The best performing models were externally validated on unseen cases pooled from four different centres (n = 121), of which 32% progressed to cancer, with an average transformation time of 45 months. RESULTS: Grade-based differences were seen for cytoplasmic eosin, nuclear eccentricity, and circularity in basal epithelial cells of OED (p < 0.05). Nucleus circularity was associated with OED recurrence (p = 0.018) and epithelial perimeter associated with malignant transformation (p = 0.03). The developed model demonstrated superior predictive potential for malignant transformation (AUROC 0.77) and OED recurrence (AUROC 0.74) as compared with conventional WHO grading (AUROC 0.68 and 0.71, respectively). External validation supported the prognostic strength of this model. CONCLUSIONS: This study supports a novel prognostic model which outperforms existing grading systems. Further studies are warranted to evaluate its significance for OED prognostication.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Precancerous Conditions , Humans , Mouth Neoplasms/pathology , Precancerous Conditions/pathology , Carcinoma, Squamous Cell/pathology , Mouth Mucosa/pathology , Prognosis , Cell Transformation, Neoplastic/pathology
19.
Br J Cancer ; 129(11): 1747-1758, 2023 11.
Article in English | MEDLINE | ID: mdl-37777578

ABSTRACT

BACKGROUND: Tumour infiltrating lymphocytes (TILs) are a prognostic parameter in triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, their role in luminal (oestrogen receptor positive and HER2 negative (ER + /HER2-)) BC remains unclear. In this study, we used artificial intelligence (AI) to assess the prognostic significance of TILs in a large well-characterised cohort of luminal BC. METHODS: Supervised deep learning model analysis of Haematoxylin and Eosin (H&E)-stained whole slide images (WSI) was applied to a cohort of 2231 luminal early-stage BC patients with long-term follow-up. Stromal TILs (sTILs) and intratumoural TILs (tTILs) were quantified and their spatial distribution within tumour tissue, as well as the proportion of stroma involved by sTILs were assessed. The association of TILs with clinicopathological parameters and patient outcome was determined. RESULTS: A strong positive linear correlation was observed between sTILs and tTILs. High sTILs and tTILs counts, as well as their proximity to stromal and tumour cells (co-occurrence) were associated with poor clinical outcomes and unfavourable clinicopathological parameters including high tumour grade, lymph node metastasis, large tumour size, and young age. AI-based assessment of the proportion of stroma composed of sTILs (as assessed visually in routine practice) was not predictive of patient outcome. tTILs was an independent predictor of worse patient outcome in multivariate Cox Regression analysis. CONCLUSION: AI-based detection of TILs counts, and their spatial distribution provides prognostic value in luminal early-stage BC patients. The utilisation of AI algorithms could provide a comprehensive assessment of TILs as a morphological variable in WSIs beyond eyeballing assessment.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Artificial Intelligence , Prognosis , Triple Negative Breast Neoplasms/pathology , Biomarkers, Tumor/metabolism
20.
Bioinform Adv ; 3(1): vbad122, 2023.
Article in English | MEDLINE | ID: mdl-37720007

ABSTRACT

Summary: Whole slide images (WSIs) are multi-gigapixel images of tissue sections, which are used in digital and computational pathology workflows. WSI datasets are commonly heterogeneous collections of proprietary or niche specialized formats which are challenging to handle. This note describes an open-source Python application for efficiently converting between WSI formats, including common, open, and emerging cloud-friendly formats. WSIC is a software tool that can quickly convert WSI files across various formats. It has a high performance and maintains the resolution metadata of the original images. WSIC is ideal for pre-processing large-scale WSI datasets with different file types. Availability and implementation: Source code is available on GitHub at https://github.com/John-P/wsic/ under a permissive licence. WSIC is also available as a package on PyPI at https://pypi.org/project/WSIC/.

SELECTION OF CITATIONS
SEARCH DETAIL
...