Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(21): 19572-19583, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31045340

ABSTRACT

The motivation for designing low-molecular-weight gelators with self-healing characteristics originates from elegant examples in biology such as vines of the genus Aristolochia whose internal secondary growth exhibits rapid self-healing in their stems. In the present work, we had explored the stimuli-responsive dual gelation characteristics for the ester-functionalized surfactant (4-(2-(hexadecyloxy)-2-oxoethyl)-4-methylmorpholin-4-ium bromide, C16EMorphBr) in aqueous medium at 7.20% (w/v) critical gel concentration and pH 7.4. The hydrogel provides an excellent platform to study dynamic phase behavior within a supramolecular network as it exhibits transformation from a fibrillar opaque hydrogel to a transparent hydrogel upon heating. Molecular interactions, arrangement within the supramolecular framework, and mechanical properties of the hydrogels were characterized using Fourier transform infrared, small-angle neutron scattering, rheological analysis, and tensile strength and cyclic loading-unloading tests. The fibrillar opaque gel has been characterized for its morphology using scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The self-sustained, self-healable porous fibrillar opaque xerogel was further explored for selectively absorbing anionic dyes and for its load-bearing characteristics. We conclude a perspective on designing a new-age gelator that can open entirely new avenues in environmental protection and wearable "smart" devices.

2.
ACS Omega ; 3(9): 12068-12078, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30320287

ABSTRACT

An ionic liquid-based surfactant with ester functionality self-aggregates in an aqueous medium and forms ionogels at 8.80% (w/v) concentration at physiological pH. The ionogel exhibited a remarkable change in its appearance with temperature from fibrillar opaque to transparent because of the dynamic changes within its supramolecular structure. This gel-to-gel phase transition occurs below the melting point of the solid ionic liquid. The ionogels were investigated using turbidity, differential scanning calorimetry, scanning electron microscopy (SEM), field emission SEM (FE-SEM), inverted microscopy, transmission electron microscopy imaging, Fourier transform infrared spectroscopy, and rheological measurements. The fibrillar opaque ionogel and transparent ionogel were studied for their ability to absorb dyes (methyl orange and crystal violet) and to encapsulate drugs (diclofenac sodium and imatinib mesylate).

3.
Chemphyschem ; 19(7): 865-872, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29319220

ABSTRACT

An impetus for the sustained interest in the formation of vesicles is their potential application as efficient drug-delivery systems. A simple approach for ionic surfactants is to add a vesicle-inducing drug of opposite charge. In ionic gemini surfactants (GSs) two molecules are covalently linked by a spacer. Regarding drug delivery, GSs are more attractive candidates than their single-chain counterparts because of their high surface activity and the effect on the physicochemical properties of their solutions caused by changing the length of the spacer and inclusion of heteroatoms therein. Herein, the effect of the (anionic) anti-inflammatory drug diclofenac sodium (DS) on the morphology of aqueous micellar aggregates of gemini surfactant hexamethylene-1,6-bis (dodecyldimethylammonium) dibromide (12-6-12) at 25 °C is reported. Several independent techniques are used to demonstrate drug-induced micelle-to-vesicle transition. These include UV/Vis spectrophotometry, dynamic light scattering, TEM, and small-angle neutron scattering. The micelles are transformed into vesicles with increasing [DS]/[12-6-12] molar ratio; precipitation of the catanionic (DS-GS) complex then occurred, followed by partial resuspension of the weakly anionic precipitate. The stability of some of the prepared vesicles at human body temperature shows their potential use in drug delivery.


Subject(s)
Alkenes/chemistry , Diclofenac/chemistry , Drug Carriers/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Micelles , Microscopy, Electron, Transmission , Models, Chemical , Nephelometry and Turbidimetry , Particle Size , Phase Transition
4.
ACS Omega ; 3(12): 17751-17761, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458372

ABSTRACT

Surfactant-mediated coacervates are termed as the new age microreactors for their ability to spontaneously sequester the molecules with varied polarities and functionalities. Efforts to emulate this applicability of coacervates through synthetic control of surfactant structures are finding success; however, there is little understanding of how to translate these changes into tailor-made properties. Herein, we designed 3-methyl-1-(octyloxycarbonylmethyl)imidazolium bromide (C8EMeImBr), an ester-functionalized ionic liquid-based surfactant, which shows better surface active properties than the nonfunctionalized and conventional cationic surfactant and forms complex coacervates over the broad range of concentration with sodium salicylate (NaSal). Mono- and divalent cations as well as ionic strength, viscosity, and time-dependent stability of the coacervates had also been addressed in order to study whether these coacervates could work as microreactors to encapsulate various molecules. The anionic charged complex coacervates with sponge morphology and honey comb-like interior show good efficiency to sequester cationic dyes from water because of electrostatic and hydrophobic interactions and good encapsulation efficiency for curcumin owing to their high surface area. Results suggest that ionic liquid-based coacervates studied here could be exploited as a novel low-cost, effective, and environmentally benign alternative to sequester dyes from the contaminated water and their recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...