Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34883811

ABSTRACT

We performed a systematic study involving simulation and experimental techniques to develop induced-junction silicon photodetectors passivated with thermally grown SiO2 and plasma-enhanced chemical vapor deposited (PECVD) SiNx thin films that show a record high quantum efficiency. We investigated PECVD SiNx passivation and optimized the film deposition conditions to minimize the recombination losses at the silicon-dielectric interface as well as optical losses. Depositions with varied process parameters were carried out on test samples, followed by measurements of minority carrier lifetime, fixed charge density, and optical absorbance and reflectance. Subsequently, the surface recombination velocity, which is the limiting factor for internal quantum deficiency (IQD), was obtained for different film depositions via 2D simulations where the measured effective lifetime, fixed charge density, and substrate parameters were used as input. The quantum deficiency of induced-junction photodiodes that would be fabricated with a surface passivation of given characteristics was then estimated using improved 3D simulation models. A batch of induced-junction photodiodes was fabricated based on the passivation optimizations performed on test samples and predictions of simulations. Photodiodes passivated with PECVD SiNx film as well as with a stack of thermally grown SiO2 and PECVD SiNx films were fabricated. The photodiodes were assembled as light-trap detector with 7-reflections and their efficiency was tested with respect to a reference Predictable Quantum Efficient Detector (PQED) of known external quantum deficiency. The preliminary measurement results show that PQEDs based on our improved photodiodes passivated with stack of SiO2/SiNx have negligible quantum deficiencies with IQDs down to 1 ppm within 30 ppm measurement uncertainty.

2.
Nanomaterials (Basel) ; 11(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375754

ABSTRACT

In this work, the interface composition of the superconducting Ti/PdAu bilayer is tuned by an annealing process in N2 from 100 to 500 °C to control the superconducting transition temperature (Tc). This Ti-PdAu composition layer is characterized with a high-resolution transmission electron microscopy (HRTEM) and energy-dispersive spectrometer (EDS) to show the infiltration process. The surface topography, electrical, and cryogenic properties are also shown. The inter-infiltration of Ti and PdAu induced by the thermal treatments generates an intermixed layer at the interface of the bilayer film. Due to the enforced proximity effect by the annealing process, the Tc of Ti (55 nm)/PdAu (60 nm) bilayer thin films is tuned from an initial value of 243 to 111 mK which is a temperature that is suitable for the application as the function unit of a superconducting transition edge sensor.

3.
Sensors (Basel) ; 17(7)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28726726

ABSTRACT

The increasing demand for light emitting diodes (LEDs) is driven by a number of application categories, including display backlighting, communications, signage, and general illumination. Nowadays, they have also become attractive candidates as new photometric standards. In recent years, LEDs have started to be applied as wavelength-selective photo-detectors as well. Nevertheless, manufacturers' datasheets are limited about LEDs used as sources in terms of degradation with operating time (aging) or shifting of the emission spectrum as a function of the forward current. On the contrary, as far as detection is concerned, information about spectral responsivity of LEDs is missing. We investigated, mainly from a radiometric point of view, more than 50 commercial LEDs of a wide variety of wavelength bands, ranging from ultraviolet (UV) to near infrared (NIR). Originally, the final aim was to find which LEDs could better work together as detector-emitter pairs for the creation of self-calibrating ground-viewing LED radiometers; however, the findings that we are sharing here following, have a general validity that could be exploited in several sensing applications.

4.
Sensors (Basel) ; 16(7)2016 Jun 23.
Article in English | MEDLINE | ID: mdl-27347950

ABSTRACT

Transition-edge sensors (TESs) are single photon detectors attractive for applications in quantum optics and quantum information experiments owing to their photon number resolving capability. Nowadays, high-energy resolution TESs for telecommunication are based on either W or Au/Ti films, demonstrating slow recovery time constants. We report our progress on the development of an Al/Ti TES. Since bulk aluminum has a critical temperature (Tc) of ca. 1.2 K and a sufficiently low specific heat (less than 10(-4) J/cm³K²), it can be employed to produce the sensitive material for optical TESs. Furthermore, exploiting its high Tc, Al-based TESs can be trimmed in a wider temperature range with respect to Ti or W. A first Al/Ti TES with a Tc ≈ 142 mK, investigated from a thermal and optical point of view, has shown a response time constant of about 2 µs and single photon discrimination with 0.34 eV energy resolution at telecom wavelength, demonstrating that Al/Ti films are suitable to produce TESs for visible and NIR photon counting.

SELECTION OF CITATIONS
SEARCH DETAIL
...