Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36079562

ABSTRACT

Magnesium matrix composites are extensively used in automotive and structural applications due to their low density, high strength, and wear-resistant properties. To reach the scope of industry needs, research is carried out regarding enhancing the mechanical and tribological behavior of the magnesium composites by reinforcing the nano-sized reinforcements. In the present work, research has been carried out to enhance the properties of the magnesium AZ91D hybrid composite by reinforcing carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) with varying weight percentages (AZ91D + 0.5% CF's + 0.5% MWCNT and AZ91D + 0.75% CF's + 0.75% MWCNT, respectively). The experimental tests were carried out to evaluate the mechanical and tribological behavior of the composites. The test results showed that the addition of CF and MWCNT reinforcements improved the hybrid Mg composite's hardness, tensile strength, and impact strength compared to the base Mg matrix. The AZ91D + 0.75% CF's + 0.75% MWCNT hybrid composite showed a 19%, 35%, and 66% increased hardness, tensile strength, and impact strength, respectively, compared to the base Mg AZ91D. The wear test results also showed the improved wear resistance of the Mg composite compared to the base matrix. The enhanced wear resistance of the composite is due to the addition of hard MWCNT and CF reinforcements. The wear rate of the AZ91D + 0.75%CF's + 0.75% MWCNT composite for a load of 30 N at a sliding distance of 1500 m is lower as compared to the base matrix. The SEM micrographs of the worn surfaces revealed the existence of abrasive wear. The improved mechanical and tribological behavior of the magnesium composite is also due to the homogeneous distribution of the hard reinforcement particles along the grain boundaries.

2.
Materials (Basel) ; 14(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34300958

ABSTRACT

This paper investigates the physical and mechanical properties of bighorns of Deccani breed sheep native from Karnataka, India. The exhaustive work comprises two cases. First, rehydrated (wet) and ambient (dry) conditions, and second, the horn coupons were selected for longitudinal and lateral (transverse) directions. More than seventy-two samples were subjected to a test for physical and mechanical property extraction. Further, twenty-four samples were subjected to physical property testing, which included density and moisture absorption tests. At the same time, mechanical testing included analysis of the stress state dependence with the horn keratin tested under tension, compression, and flexural loading. The mechanical properties include the elastic modulus, yield strength, ultimate strength, failure strain, compressive strength, flexural strength, flexural modulus, and hardness. The results showed anisotropy and depended highly on the presence of water content more than coupon orientation. Wet conditioned specimens had a significant loss in mechanical properties compared with dry specimens. The observed outcomes were shown at par with results for yield strength of 53.5 ± 6.5 MPa (which is better than its peers) and a maximum compressive stress of 557.7 ± 5 MPa (highest among peers). Young's modulus 6.5 ± 0.5 GPa and a density equivalent to a biopolymer of 1.2 g/cc are expected to be the lightest among its peers; flexural strength 168.75 MPa, with lowest failure strain percentage of 6.5 ± 0.5 and Rockwell hardness value of 60 HRB, seem best in the class of this category. Simulation study identified a suitable application area based on impact and fatigue analysis. Overall, the exhaustive experimental work provided many opportunities to use this new material in various diversified applications in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...