Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 25(14): e202400253, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38642388

ABSTRACT

Energy demands, and environmental aspects raised the need to study hydrogen-carrying material such as borohydride for the practical usage of hydrogen as a cleaner and more efficient fuel. A proper understanding of the hydrogen generation mechanism is a key requirement for the designing of efficient catalysts, as the non-catalytic hydrolysis of borohydride in non-acidic media is a slow process. The hydrolysis mechanism of borohydride varies considerably using homogeneous and heterogeneous catalysts. A comparison of the hydrolysis mechanism of borohydride using gold and silver as homogenous and heterogeneous catalysts is given in this review. Unexpectedly, with gold catalyst, Au+ or Au(111), only two steps of hydrolysis occur and BH(OH)2 is produced, while with silver catalyst, Ag+ or Ag(111), the hydrolysis can proceed to completion.

2.
Chemphyschem ; 23(13): e202200069, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35403783

ABSTRACT

The mechanism of the catalytic hydrolysis of BH4 - on Au(111) as studied by DFT is reported. The results are compared to the analogous process on Ag(111) that was recently reported. It is found that the borohydride species are adsorbed stronger on the Au0 -NP surface than on the Ag0 -NP surface. The electron affinity of the Au is larger than that of Ag. The results indicate that only two steps of hydrolysis are happening on the Au(111) surface and the reaction mechanism differs significantly from that on the Ag(111) surface. These remarkable results were experimentally verified. Upon hydrolysis, only three hydrogens of BH4 - are transferred to the Au surface, not all four, and H2 generation is enhanced in the presence of surface H atoms. Thus, it is proposed that the BH4 - hydrolysis and reduction mechanisms catalyzed by M0 -NPs depend considerably on the nature of the metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...