Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 152(5): 054302, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32035476

ABSTRACT

Using the CD3OH isotopologue of methanol, the ratio of D2H+ to D3 + formation is manipulated by changing the characteristics of the intense femtosecond laser pulse. Detection of D2H+ indicates a formation process involving two hydrogen atoms from the methyl side of the molecule and a proton from the hydroxyl side, while detection of D3 + indicates local formation involving only the methyl group. Both mechanisms are thought to involve a neutral D2 moiety. An adaptive control strategy that employs image-based feedback to guide the learning algorithm results in an enhancement of the D2H+/D3 + ratio by a factor of approximately two. The optimized pulses have secondary structures 110-210 fs after the main pulse and result in photofragments that have different kinetic energy release distributions than those produced from near transform limited pulses. Systematic changes to the linear chirp and higher order dispersion terms of the laser pulse are compared to the results obtained with the optimized pulse shapes.

2.
Nat Commun ; 9(1): 5186, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518927

ABSTRACT

Roaming mechanisms, involving the brief generation of a neutral atom or molecule that stays in the vicinity before reacting with the remaining atoms of the precursor, are providing valuable insights into previously unexplained chemical reactions. Here, the mechanistic details and femtosecond time-resolved dynamics of H3+ formation from a series of alcohols with varying primary carbon chain lengths are obtained through a combination of strong-field laser excitation studies and ab initio molecular dynamics calculations. For small alcohols, four distinct pathways involving hydrogen migration and H2 roaming prior to H3+ formation are uncovered. Despite the increased number of hydrogens and possible combinations leading to H3+ formation, the yield decreases as the carbon chain length increases. The fundamental mechanistic findings presented here explore the formation of H3+, the most important ion in interstellar chemistry, through H2 roaming occurring in ionic species.

3.
Phys Rev Lett ; 120(10): 103001, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29570318

ABSTRACT

A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O^{+}+C^{+}+S^{+} and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO^{2+} or CS^{2+}, before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS^{3+} breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

SELECTION OF CITATIONS
SEARCH DETAIL
...