Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(11): 9731-9744, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38807539

ABSTRACT

Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound 28 (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.


Subject(s)
Heart Failure , Potassium Channel Blockers , Animals , Heart Failure/drug therapy , Humans , Rats , Potassium Channel Blockers/therapeutic use , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacokinetics , Potassium Channel Blockers/chemical synthesis , Structure-Activity Relationship , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Drug Discovery , Diuresis/drug effects , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/therapeutic use , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Male , Rats, Sprague-Dawley
2.
J Med Chem ; 60(9): 3795-3803, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28418664

ABSTRACT

We have recently disclosed 5-phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine 1 as a potent IKur current blocker with selectivity versus hERG, Na and Ca channels, and an acceptable preclinical PK profile. Upon further characterization in vivo, compound 1 demonstrated an unacceptable level of brain penetration. In an effort to reduce the level of brain penetration while maintaining the overall profile, SAR was developed at the C2' position for a series of close analogues by employing hydrogen bond donors. As a result, 5-[5-phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide (25) was identified as the lead compound in this series. Compound 25 showed robust effects in rabbit and canine pharmacodynamic models and an acceptable cross-species pharmacokinetic profile and was advanced as the clinical candidate. Further optimization of 25 to mitigate pH-dependent absorption resulted in identification of the corresponding phosphoramide prodrug (29) with an improved solubility and pharmacokinetic profile.


Subject(s)
Atrial Fibrillation/drug therapy , Potassium Channel Blockers/therapeutic use , Quinazolines/therapeutic use , Sodium Channel Blockers/therapeutic use , Sulfonamides/therapeutic use , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Dogs , Mass Spectrometry , Potassium Channel Blockers/pharmacology , Proton Magnetic Resonance Spectroscopy , Quinazolines/chemistry , Quinazolines/pharmacology , Rabbits , Sodium Channel Blockers/pharmacology , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...