Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 96(15): 4896-4906, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27109704

ABSTRACT

BACKGROUND: Linseed is the richest agricultural source of α-linolenic acid (ALA), an ω-3 fatty acid (FA) that offers several nutritional benefits. In the present study, sequence characterization of six desaturase genes (SAD1, SAD2, FAD2, FAD2-2, FAD3A and FAD3B) and 3D structure prediction of their proteins from ten Indian linseed varieties differing in ALA content were performed to determine whether the nucleotide and amino acid (AA) sequence variants have any functional implications in differential accumulation of ALA or other FAs in linseed. RESULTS: The SAD and FAD2 genes exhibited few sequence variations among the ten varieties, forming only one or two protein isoforms. In contrast, the FAD3A and FAD3B genes showed more sequence variations and three or four protein isoforms. Interestingly, the two high-ALA varieties NL260 and Padmini had the same FAD3B nucleotide and protein isoforms, which differed from all other varieties. Surprisingly, no AA changes altered the 3D structures of the desaturase proteins. CONCLUSION: Several nucleotide and AA sequence variations in desaturase genes were observed; however, they did not alter the 3D structure of any desaturase protein and were not correlated with FA levels among the ten linseed varieties, which had different ALA contents. This suggests a complex regulatory process of biosynthesis of FAs in linseed. © 2016 Society of Chemical Industry.


Subject(s)
Fatty Acid Desaturases/chemistry , Fatty Acid Desaturases/genetics , Fatty Acids/analysis , Flax/chemistry , Flax/enzymology , Amino Acid Sequence , Base Sequence , Computer Simulation , Gene Expression Regulation, Plant , Genetic Variation , Haplotypes , Molecular Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Species Specificity , alpha-Linolenic Acid/analysis
2.
Phytochemistry ; 98: 41-53, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24380374

ABSTRACT

Linseed or flax (Linum usitatissimum L.) varieties differ markedly in their seed α-linolenic acid (ALA) levels. Fatty acid desaturases play a key role in accumulating ALA in seed. We performed fatty acid (FA) profiling of various seed developmental stages of ten Indian linseed varieties including one mutant variety. Depending on their ALA contents, these varieties were grouped under high ALA and low ALA groups. Transcript profiling of six microsomal desaturase genes (SAD1, SAD2, FAD2, FAD2-2, FAD3A and FAD3B), which act sequentially in the fatty acid desaturation pathway, was performed using real-time PCR. We observed gene specific as well as temporal expression pattern for all the desaturases and their differential expression profiles corresponded well with the variation in FA accumulation in the two groups. Our study points to efficient conversion of intermediate FAs [stearic (SA), oleic (OA) and linoleic acids (LA)] to the final product, ALA, due to efficient action of all the desaturases in high ALA group. While in the low ALA group, even though the initial conversion up to OA was efficient, later conversions up to ALA seemed to be inefficient, leading to higher accumulation of OA and LA instead of ALA. We sequenced the six desaturase genes from the ten varieties and observed that variation in the amino acid (AA) sequences of desaturases was not responsible for differential ALA accumulation, except in the mutant variety TL23 with very low (<2%) ALA content. In TL23, a point mutation in the FAD3A gene resulted into a premature stop codon generating a truncated protein with 291 AA.


Subject(s)
Fatty Acid Desaturases/genetics , Flax/genetics , Genetic Variation/genetics , Seeds/genetics , Transcription, Genetic/genetics , alpha-Linolenic Acid/genetics , Fatty Acid Desaturases/metabolism , Flax/growth & development , Molecular Sequence Data , Seeds/growth & development
3.
Mol Biotechnol ; 45(2): 161-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20195799

ABSTRACT

The objective of this study was to analyze the genetic relationships, using PCR-based ISSR markers, among 70 Indian flax (Linum usitatissimum L.) genotypes actively utilized in flax breeding programs. Twelve ISSR primers were used for the analysis yielding 136 loci, of which 87 were polymorphic. The average number of amplified loci and the average number of polymorphic loci per primer were 11.3 and 7.25, respectively, while the percent loci polymorphism ranged from 11.1 to 81.8 with an average of 63.9 across all the genotypes. The range of polymorphism information content scores was 0.03-0.49, with an average of 0.18. A dendrogram was generated based on the similarity matrix by the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), wherein the flax genotypes were grouped in five clusters. The Jaccard's similarity coefficient among the genotypes ranged from 0.60 to 0.97. When the omega-3 alpha linolenic acid (ALA) contents of the individual genotypes were correlated with the clusters in the dendrogram, the high ALA containing genotypes were grouped in two clusters. This study identified SLS 50, Ayogi, and Sheetal to be the most diverse genotypes and suggested their use in breeding programs and for developing mapping populations.


Subject(s)
Flax/genetics , Repetitive Sequences, Nucleic Acid , Seeds/genetics , Sequence Analysis, DNA/methods , Analysis of Variance , Cluster Analysis , DNA Primers/genetics , Fatty Acids/analysis , Flax/chemistry , Genetic Variation , Genotype , Principal Component Analysis , Seeds/chemistry , alpha-Linolenic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...