Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1075011, 2022.
Article in English | MEDLINE | ID: mdl-36684741

ABSTRACT

Introduction: The contrasting soil management in flooded-transplanted rice (Oryza sativa) and dry-tilled wheat (Triticum aestivum) poses a challenge for improving low nitrogen use efficiency (NUE) of the rice-wheat system. Integration of organics in nutrient management can bring in changes favoring efficient N uptake via changes in growing conditions and soil responses. Materials and methods: This study reported the results of a 15-year-long experiment on integrated nutrient management (INM) systems for rice-wheat cropping. The INM included substituting ~50% of chemical fertilizers via (i) including a legume crop (Vigna radiata) in the sequence and its biomass incorporation (LE), (ii) green manuring with Sesbania aculeata (GM), (iii) farmyard manure application (FYM), (iv) 1/3 wheat stubble in situ retention (WS), and (v) 1/3 rice stubble in situ retention. Results and Discussion: The INM strategies resulted in improved NUE compared to 100% chemical fertilizers (F). The INM had significantly higher net N mineralization and improved biological activity aligning with the NUE trends. The reductions in redox potential (Eh) and pH during rice season improved NUE under integrated management. Highly reduced conditions favored N mineralization and plant availability in form of NH 4 + - N resulting in enhanced uptake efficiency, in rice crop. The soil organic carbon (C) significantly increased in INM, and an effect of the active C fractions was evident on the NUE of the wheat crop. Conclusion: The results showed that these INM strategies can immensely benefit the rice-wheat system via improvement in biological health along with electrochemical changes for flooded rice, and labile-C-assisted improvement in soil conditions for wheat.

2.
Front Plant Sci ; 12: 634448, 2021.
Article in English | MEDLINE | ID: mdl-34093604

ABSTRACT

PURPOSE: One of the serious constraints for the integration of organics in soil fertility plans is the release and availability of nitrogen (N) to match the critical growth stages of a crop. The interplay between organic amendment characteristics and soil moisture conditions can significantly affect the nutrient release and availability, especially for dryland crops like wheat. In this study, the effects of integrated nutrient management strategies using diverse qualities of organic amendments on daily N mineralization and its availability to plants during the full growing season of the wheat crop were analyzed in a 10-year experiment. METHODS: The management included (1) F, inorganic fertilizers at 100% rate, compared to a reduced rate of inorganic fertilizers (55% N) supplemented with organic inputs via (2) GM, green manuring, (3) LE, legume cropping and its biomass recycling, (4) WS, wheat stubble retention, (5) RS, rice stubble retention, and (6) FYM, farmyard manure application, during the preceding rice season. Ion exchange resin (IER) membrane strips were used as plant root simulators to determine daily NH4 +-N and NO3 --N availability in soil solution during the full wheat growing period. RESULTS: Total available N for the full season was in the following order: GM (962 µg cm-2) > F (878 µg cm-2) > LE (872 µg cm-2) > FYM (865 µg cm-2) > RS (687 µg cm-2) > WS (649 µg cm-2). No significant differences were observed in NH4 +-N availability throughout the cropping period as compared to NO3 --N which showed significant differences among management at critical crop growth stages. CONCLUSION: Legume biomass incorporation (GM, LE) and farmyard manure (FYM) based management provided the most consistent supply equivalent to or even exceeding 100% inorganic fertilizers at several critical stages of growth, especially at tillering and stem elongation. Integration of organics in management increased nitrogen use efficiency 1.3-2.0 times, with cereal crop residue-based management having the highest efficiency followed by legume biomass incorporation.

3.
Sci Rep ; 9(1): 9114, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235727

ABSTRACT

Major nutrient management systems for rice-wheat cropping were compared for their potential to credit organic carbon (C) to the soil, its fractionation into active (very labile, VLc; labile, Lc) and passive (less labile, LLc; non-labile, NLc) pools, and crop yield responses. A ten-year long experiment was used to study effects of: (i) no inputs (Control, O), (ii) 100% inorganic fertilizers (F) compared to reduced fertilizers inputs (55%) supplemented with biomass incorporation from (iii) opportunity legume crop (Vigna radiata) (LE), (iv) green manure (Sesbania aculeata) (GM), (v) farmyard manure (FYM), (vi) wheat stubble (WS), and (vii) rice stubble (RS). Maximum C input to soil (as the percentage of C assimilated in the system) was in GM (36%) followed by RS (34%), WS (33%), LE (24%), and FYM (21%) compared to O (15%) and F (15%). Total C input to soil had a direct effect on soil C stock, soil C fractions (maximum in VLc and LLc), yet the responses in terms of biological yield were controlled by the quality of the biomass (C:N ratio, decomposition, etc.) incorporated. Legume-based biomass inputs accrued most benefits for soil C sequestration and biological productivity.


Subject(s)
Carbon/metabolism , Nutrients/metabolism , Oryza/growth & development , Oryza/metabolism , Soil/chemistry , Triticum/growth & development , Triticum/metabolism
4.
Int J Phytoremediation ; 21(8): 790-798, 2019.
Article in English | MEDLINE | ID: mdl-30773905

ABSTRACT

Impact of root Cd concentration on production of cysteine, non-protein thiols (NP-SH), glutathione (GSH), reduced glutathione (GSSG), and phytochelatins (PCs) in Eichhornia crassipes exposed to different dilutions of brass and electroplating industry effluent (25%, 50%, and 75%), and synthetic metal solutions of Cd alone (1, 2.5, and 3.5 ppm) and with Cr (1 ppm Cd + 1 ppm Cr, 2.5 ppm Cd + 3 ppm Cr, and 3.5 ppm Cd + 4 ppm Cr) was assessed in a 45 days study. Different treatments were used to understand and compare differential antioxidant defense response of plant under practical drainage (effluent) and experimental synthetic solutions. The production of NP-SH and cysteine was maximum under 2.5 ppm Cd + 3 ppm Cr treatments i.e., 1.78 µmol/g fw and 288 nmol/g fw, respectively. The content of GSH declined whereas that of GSSG increased progressively with exposure duration in all treatments. HPLC chromatograms revealed that the concentrations of PC2, PC3, and PC4 (248, 250, and 288 nmol-SH equiv.g-1 fw, respectively) were maximum under 1 ppm Cd, 1 ppm Cd + 1 ppm Cr, and 2.5 ppm Cd + 3 ppm Cr treatments, respectively. PC2, PC3, and PC4 concentrations increased with Cd accumulation in the range 812-1354 µg/g dry wt, 1354-2032 µg/g dry wt and 2032-3200 µg/g dry wt, respectively. Thus, the study establishes a direct proportionality relationship between concentration/length of phytochelatins and root Cd concentrations, upto threshold limits, in E. crassipes.


Subject(s)
Eichhornia/drug effects , Phytochelatins , Biodegradation, Environmental , Cadmium , Glutathione , Sulfhydryl Compounds
5.
Environ Monit Assess ; 189(9): 482, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28861773

ABSTRACT

The competence of novel fungal consortium, consisting of Nigrospora sp. LDF00204 (accession no. KP732542) and Curvularia lunata LDF21 (accession no. KU664593), was investigated for the treatment of pulp and paper mill effluent. Fungal consortium exhibited enhanced biomass production under optimized medium conditions, i.e., glucose as carbon (C), sodium nitrate as nitrogen (N), C/N 1.5:0.5, pH 5, temperature 30 °C, and agitation 140 rpm, and significantly reduced biochemical oxygen demand (85.6%), chemical oxygen demand (80%), color (82.3%), and lignin concentration (76.1%) under catalytic enzyme activity; however, unutilized ligninolytic enzymes, such as laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP), were observed to be 13.5, 11.4, and 9.4 U/ml after the third cycle of effluent treatment in repeated batch process. Scanning electron microscopy (SEM) of fungal consortium revealed their compatibility through intermingled hyphae and spores, while the FTIR spectra confirmed the alteration of functional groups ensuring structural changes during the effluent treatment. Gas chromatography/mass spectroscopy (GC-MS) analysis showed the reduction of complex compounds and development of numerous low-molecular-weight metabolites, such as 1-3-dimethyl benzene, 2-chloro-3-methyl butane, pentadecanoic acid, and 1-2-benzene dicarboxylic acid, during the treatment, demonstrating the massive potential of the novel fungal consortium to degrade recalcitrant industrial pollutants.


Subject(s)
Ascomycota/growth & development , Industrial Waste/analysis , Microbial Consortia , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Ascomycota/enzymology , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Laccase/metabolism , Lignin/analysis , Paper , Peroxidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL