Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Public Health ; 12: 1340673, 2024.
Article in English | MEDLINE | ID: mdl-38706548

ABSTRACT

Background: Tuberculosis (TB) is a major public health emergency in many countries, including Kazakhstan. Despite the decline in the incidence rate and having one of the highest treatment effectiveness in the world, the incidence rate of TB remains high in Kazakhstan. Social and environmental factors along with host genetics contribute to pulmonary tuberculosis (PTB) incidence. Due to the high incidence rate of TB in Kazakhstan, our research aimed to study the epidemiology and genetics of PTB in Kazakhstan. Materials and methods: 1,555 participants were recruited to the case-control study. The epidemiology data was taken during an interview. Polymorphisms of selected genes were determined by real-time PCR using pre-designed TaqMan probes. Results: Epidemiological risk factors like diabetes (χ2 = 57.71, p < 0.001), unemployment (χ2 = 81.1, p < 0.001), and underweight-ranged BMI (<18.49, χ2 = 206.39, p < 0.001) were significantly associated with PTB. VDR FokI (rs2228570) and VDR BsmI (rs1544410) polymorphisms were associated with an increased risk of PTB. A/A genotype of the TLR8 gene (rs3764880) showed a significant association with an increased risk of PTB in Asians and Asian males. The G allele of the rs2278589 polymorphism of the MARCO gene increases PTB susceptibility in Asians and Asian females. VDR BsmI (rs1544410) polymorphism was significantly associated with PTB in Asian females. A significant association between VDR ApaI polymorphism and PTB susceptibility in the Caucasian population of Kazakhstan was found. Conclusion: This is the first study that evaluated the epidemiology and genetics of PTB in Kazakhstan on a relatively large cohort. Social and environmental risk factors play a crucial role in TB incidence in Kazakhstan. Underweight BMI (<18.49 kg/m2), diabetes, and unemployment showed a statistically significant association with PTB in our study group. FokI (rs2228570) and BsmI (rs1544410) polymorphisms of the VDR gene can be used as possible biomarkers of PTB in Asian males. rs2278589 polymorphism of the MARCO gene may act as a potential biomarker of PTB in Kazakhs. BsmI polymorphism of the VDR gene and rs2278589 polymorphism of the MARCO gene can be used as possible biomarkers of PTB risk in Asian females as well as VDR ApaI polymorphism in Caucasians.


Subject(s)
Receptors, Calcitriol , Tuberculosis, Pulmonary , Humans , Kazakhstan/epidemiology , Male , Female , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/epidemiology , Adult , Case-Control Studies , Risk Factors , Middle Aged , Receptors, Calcitriol/genetics , Genetic Predisposition to Disease , Incidence , Genotype , Polymorphism, Single Nucleotide
2.
Front Genet ; 15: 1249751, 2024.
Article in English | MEDLINE | ID: mdl-38562378

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer in Central Asia, often diagnosed at advanced stages. Understanding population-specific patterns of ESCC is crucial for tailored treatments. This study aimed to unravel ESCC's genetic basis in Kazakhstani patients and identify potential biomarkers for early diagnosis and targeted therapies. ESCC patients from Kazakhstan were studied. We analyzed histological subtypes and conducted in-depth transcriptome sequencing. Differential gene expression analysis was performed, and significantly dysregulated pathways were identified using KEGG pathway analysis (p-value < 0.05). Protein-protein interaction networks were constructed to elucidate key modules and their functions. Among Kazakhstani patients, ESCC with moderate dysplasia was the most prevalent subtype. We identified 42 significantly upregulated and two significantly downregulated KEGG pathways, highlighting molecular mechanisms driving ESCC pathogenesis. Immune-related pathways, such as viral protein interaction with cytokines, rheumatoid arthritis, and oxidative phosphorylation, were elevated, suggesting immune system involvement. Conversely, downregulated pathways were associated with extracellular matrix degradation, crucial in cancer invasion and metastasis. Protein-protein interaction network analysis revealed four distinct modules with specific functions, implicating pathways in esophageal cancer development. High-throughput transcriptome sequencing elucidated critical molecular pathways underlying esophageal carcinogenesis in Kazakhstani patients. Insights into dysregulated pathways offer potential for early diagnosis and precision treatment strategies for ESCC. Understanding population-specific patterns is essential for personalized approaches to ESCC management.

3.
Nutrients ; 16(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38398882

ABSTRACT

BACKGROUND: Tuberculosis (TB) and vitamin D deficiency remain major public health problems in Kazakhstan. Due to the high incidence of pulmonary tuberculosis in the country and based on the importance of vitamin D in the modulation of the immune response and the association of its deficiency with many health conditions, the aim of our research was to study the vitamin D status, VDR and TLR gene polymorphisms, and pulmonary tuberculosis epidemiology in Kazakhstan. METHODS: A case-control study included 411 individuals diagnosed with pulmonary TB and 686 controls with no family history of pulmonary tuberculosis. Concentrations of serum vitamin D (25-(OH)D) levels were measured by electrochemiluminescence immunoassay. The gene polymorphisms were determined by real-time polymerase chain reaction (PCR) allelic discrimination assay using TaqMan probes. The association between the risk of pulmonary TB and polymorphisms was evaluated using multimodal logistic regression and assessed with the ORs, corresponding to 95% Cis, and the significance level was determined as p < 0.05. RESULTS: 1097 individuals were recruited from 3 different regions of Kazakhstan. Biochemical data showed vitamin D deficiency (25-(OH)D < 20 ng/mL) was present in both groups, with the case group accounting for almost 95% and 43.7% in controls. Epidemiological data revealed that socioeconomic factors such as BMI < 25 kg/m2 (p < 0.001), employment (p < 0.001), diabetes (p < 0.001), and vitamin D deficiency (p < 0.001) were statistically different between case and control groups. Logistic regression analysis, adjusted by sex, age, BMI, residence, employment, smoking, alcohol consumption, and diabetes, showed that T/T polymorphism of the VDR gene (rs1544410, OR = 1.97, 95% CI: 1.04-3.72, p = 0.03) and A/A polymorphism of the TLR8 gene (rs3764880, OR = 2.44, 95% CI: 1.20-4.98, p = 0.01) were associated with a high risk of developing pulmonary tuberculosis. CONCLUSIONS: Vitamin D deficiency remains prevalent in our study cohort and is associated with TB progression. Socioeconomic determinants such as unemployment, BMI under 25 kg/m2, and diabetes are the main risk factors for the development of pulmonary TB in our study. A/A polymorphism of TLR8 (rs3764880) and T/T polymorphism (BsmI, rs1544410) of VDR genes may act as biomarkers for pulmonary tuberculosis in the Kazakh population.


Subject(s)
Diabetes Mellitus , Tuberculosis, Pulmonary , Tuberculosis , Vitamin D Deficiency , Humans , Vitamin D , Case-Control Studies , Kazakhstan/epidemiology , Toll-Like Receptor 8/genetics , Receptors, Calcitriol/genetics , Polymorphism, Genetic , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/genetics , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/genetics , Tuberculosis/complications , Vitamins , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Genotype
4.
J Clin Med ; 12(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068287

ABSTRACT

Left ventricular assist device (LVAD) implantation is one of the mechanical circulatory support (MCS) treatments for advanced heart failure (HF) patients. MCS has emerged as a lifesaving therapy that improves patients' quality of life. However, MCS remains limited by a paradoxical coagulopathy accompanied by thrombosis and bleeding. The mechanisms of MCS thrombosis are increasingly being defined, but MCS-related bleeding, which is related to shear-mediated alteration of platelet function, remains poorly understood. Complications might develop due to the high non-physiological shear stress in the device and as a consequence of individual variability in response to the antithrombotic therapy. Thromboelastography (TEG) and genotyping of gene polymorphisms that are involved in the coagulation cascade and in the metabolism of the antithrombotic therapy might be valuable sources of information for the reduction of complication development. The aim of the study was to identify genetic factors related to the development of device complications according to the implanted LVAD type. We compared the clinical and genetic data of HF patients (n = 98) with/without complications with three types of implanted devices: HeartWare HVAD (HW), HeartMate II (HMII), and HeartMate 3 (HM3). rs9923231 in VKORC1 (95%CI -6.28-0.22, p = 0.04) and rs5918 in ITGB3 genes (95%CI 0.003-4.36, p = 0.05) showed significant association with the TEG coagulation index parameter, which identified hyper- and hypo-coagulation states. The wild genotype of rs5918 in the ITGB3 gene prevailed in patients implanted with HM3 devices, which developed fewer complications than with HMII (p = 0.04). Individual genetic information could be useful in the management of patients with HF and the implantation of MCS to reduce the development of complications.

5.
J Clin Med ; 12(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38137580

ABSTRACT

Athletes carry an increased risk of cardiovascular (CV) conditions. Due to the relatively high loads and intensity of the training process, athletes' CV systems undergo various adaptations, which can combine in the future and provoke unexpected outcomes. Most CV screening protocols have several successive steps. The aim of our study was to perform a cardiological functional assessment of the National Olympic Team of Kazakhstan via several noninvasive protocols to close the gaps between the approaches and collect solid data for the prevention of sudden cardiac death (SCD) incidence among Kazakhstani athletes. METHODS: The methods used in this study were 12-lead resting electrocardiography (ECG), echocardiography, cardiointervalography, cardiopulmonary exercise testing (CPET), and HyperQ stress testing. RESULTS: One case was detected via 12-lead resting ECG. Another case of the slowdown of the heart rate (HR) recovery was detected via cardiointervalography with no clinical signs and normal ECG. The HyperQ stress testing of the women's basketball team detected a positive result in four leads in one athlete. CONCLUSION: Our results demonstrate that the CV systems of athletes require the implementation of several diagnostic methods in rest and stress conditions for more precise evaluation, with each of the methods fulfilling the whole picture for the prevention of such tragic events as sudden cardiac death and sudden cardiac arrest.

6.
Sci Rep ; 13(1): 10334, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365249

ABSTRACT

We developed a comprehensive multiplexed set of primers adapted for the Oxford Nanopore Rapid Barcoding library kit that allows universal SARS-CoV-2 genome sequencing. This primer set is designed to set up any variants of the primers pool for whole-genome sequencing of SARS-CoV-2 using single- or double-tiled amplicons from 1.2 to 4.8 kb with the Oxford Nanopore. This multiplexed set of primers is also applicable for tasks like targeted SARS-CoV-2 genome sequencing. We proposed here an optimized protocol to synthesize cDNA using Maxima H Minus Reverse Transcriptase with a set of SARS-CoV-2 specific primers, which has high yields of cDNA template for RNA and is capable of long-length cDNA synthesis from a wide range of RNA amounts and quality. The proposed protocol allows whole-genome sequencing of the SARS-CoV-2 virus with tiled amplicons up to 4.8 kb on low-titer virus samples and even where RNA degradation has occurred. This protocol reduces the time and cost from RNA to genome sequence compared to the Midnight multiplex PCR method for SARS-CoV-2 genome sequencing using the Oxford Nanopore.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Nanopore Sequencing/methods , DNA, Complementary/genetics , RNA
7.
Diagnostics (Basel) ; 13(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37370900

ABSTRACT

BACKGROUND: Kazakhstan has a high burden of multidrug-resistant tuberculosis in the Central Asian region. This study aimed to perform genomic characterization of Mycobacterium tuberculosis strains obtained from Kazakhstani patients with pre-extensively drug-resistant tuberculosis diagnosed in Kazakhstan. METHODS: Whole-genome sequencing was performed on 10 pre-extensively drug-resistant M. tuberculosis strains from different regions of Kazakhstan. All strains had high-confidence resistance mutations according to the resistance grading system previously established by the World Health Organization. The genome analysis was performed using TB-Profiler, Mykrobe, CASTB, and ResFinder. RESULTS: Valuable information for understanding the genetic diversity of tuberculosis in Kazakhstan can also be obtained from whole-genome sequencing. The results from the Phenotypic Drug Susceptibility Testing (DST) of bacterial strains were found to be consistent with the drug resistance information obtained from genomic data that characterized all isolates as pre-XDR. This information can help in developing targeted prevention and control strategies based on the local epidemiology of tuberculosis. Furthermore, the data obtained from whole-genome sequencing can help in tracing the transmission pathways of tuberculosis and facilitating early detection of outbreaks. CONCLUSIONS: The results from whole-genome sequencing of tuberculosis clinical samples in Kazakhstan provide important insights into the drug resistance patterns and genetic diversity of tuberculosis in the country. These results can contribute to the improvement of tuberculosis control and management programs in Kazakhstan.

8.
Mol Neurobiol ; 60(8): 4324-4335, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37095367

ABSTRACT

In Kazakhstan, there is insufficient data on genetic epilepsy, which has its own clinical and management implications. Thus, this study aimed to use whole genome sequencing to identify and evaluate genetic variants and genetic structure of early onset epilepsy in the Kazakhstani pediatric population. In this study, for the first time in Kazakhstan, whole genome sequencing was carried out among epilepsy diagnosed children. The study involved 20 pediatric patients with early onset epilepsy and no established cause of the disease during the July-December, 2021. The average age at enrolment was 34.5 months, with a mean age at seizure onset of 6 months. Six patients (30%) were male, and 7 were familial cases. We identified pathogenic and likely pathogenic variants in 14 (70%) cases, among them, 6 novel disease gene variants (KCNQ2, CASK, WWOX, MT-CO3, GRIN2D, and SLC12A5). Other genes associated with the disease were SCN1A (x2), SLC2A1, ARX, CACNA1B, PCDH19, KCNT1, and CHRNA2. Identification of the genetic causes in 70% of cases confirms the general structure of the etiology of early onset epilepsy and the necessity of using NGS in diagnostics. Moreover, the study describes new genotype-phenotypic correlations in genetic epilepsy. Despite certain limitations of the study, it can be concluded that the genetic etiology of pediatric epilepsy in Kazakhstan is very broad and requires further research.


Subject(s)
Epilepsy , Humans , Child , Male , Child, Preschool , Infant , Female , Epilepsy/genetics , Genetic Association Studies , Whole Genome Sequencing , Biological Variation, Population , Genetic Testing , Protocadherins , Potassium Channels, Sodium-Activated/genetics , Nerve Tissue Proteins/genetics
9.
Front Genet ; 13: 906318, 2022.
Article in English | MEDLINE | ID: mdl-36118859

ABSTRACT

Severe acute respiratory syndrome (SARS-CoV-2) is responsible for the worldwide pandemic, COVID-19. The original viral whole-genome was sequenced by a high-throughput sequencing approach from the samples obtained from Wuhan, China. Real-time gene sequencing is the main parameter to manage viral outbreaks because it expands our understanding of virus proliferation, spread, and evolution. Whole-genome sequencing is critical for SARS-CoV-2 variant surveillance, the development of new vaccines and boosters, and the representation of epidemiological situations in the country. A significant increase in the number of COVID-19 cases confirmed in August 2021 in Kazakhstan facilitated a need to establish an effective and proficient system for further study of SARS-CoV-2 genetic variants and the development of future Kazakhstan's genomic surveillance program. The SARS-CoV-2 whole-genome was sequenced according to SARS-CoV-2 ARTIC protocol (EXP-MRT001) by Oxford Nanopore Technologies at the National Laboratory Astana, Kazakhstan to track viral variants circulating in the country. The 500 samples kindly provided by the Republican Diagnostic Center (UMC-NU) and private laboratory KDL "Olymp" were collected from individuals in Nur-Sultan city diagnosed with COVID-19 from August 2021 to May 2022 using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). All samples had a cycle threshold (Ct) value below 20 with an average Ct value of 17.03. The overall average value of sequencing depth coverage for samples is 244X. 341 whole-genome sequences that passed quality control were deposited in the Global initiative on sharing all influenza data (GISAID). The BA.1.1 (n = 189), BA.1 (n = 15), BA.2 (n = 3), BA.1.15 (n = 1), BA.1.17.2 (n = 1) omicron lineages, AY.122 (n = 119), B.1.617.2 (n = 8), AY.111 (n = 2), AY.126 (n = 1), AY.4 (n = 1) delta lineages, one sample B.1.1.7 (n = 1) belongs to alpha lineage, and one sample B.1.637 (n = 1) belongs to small sublineage were detected in this study. This is the first study of SARS-CoV-2 whole-genome sequencing by the ONT approach in Kazakhstan, which can be expanded for the investigation of other emerging viral or bacterial infections on the country level.

10.
Front Genet ; 13: 902804, 2022.
Article in English | MEDLINE | ID: mdl-35899193

ABSTRACT

Kazakhstan, the ninth-largest country in the world, is located along the Great Silk Road and connects Europe with Asia. Historically, its territory has been inhabited by nomadic tribes, and modern-day Kazakhstan is a multiethnic country with a dominant Kazakh population. We sequenced and analyzed the genomes of five ethnic Kazakhs at high coverage using the Illumina HiSeq2000 next-generation sequencing platform. The five Kazakhs yielded a total number of base pairs ranging from 87,308,581,400 to 107,526,741,301. On average, 99.06% were properly mapped. Based on the Het/Hom and Ti/Tv ratios, the quality of the genomic data ranged from 1.35 to 1.49 and from 2.07 to 2.08, respectively. Genetic variants were identified and annotated. Functional analysis of the genetic variants identified several variants that were associated with higher risks of metabolic and neurogenerative diseases. The present study showed high levels of genetic admixture of Kazakhs that were comparable to those of other Central Asians. These whole-genome sequence data of healthy Kazakhs could contribute significantly to biomedical studies of common diseases as their findings could allow better insight into the genotype-phenotype relations at the population level.

11.
J Pers Med ; 12(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35629166

ABSTRACT

The left ventricular assist device (LVAD) is one of the alternative treatments for heart failure (HF) patients. However, LVAD support is followed by thrombosis, and bleeding complications which are caused by high non-physiologic shear stress and antithrombotic/anticoagulant therapy. A high risk of complications occurs in the presence of the genotype polymorphisms which are involved in the coagulation system, hemostasis function and in the metabolism of the therapy. The aim of the study was to investigate the influence of single-nucleotide polymorphisms (SNP) in HF patients with LVAD complications. We analyzed 21 SNPs in HF patients (n = 98) with/without complications, and healthy controls (n = 95). SNPs rs9934438; rs9923231 in VKORC1, rs5918 in ITGB3 and rs2070959 in UGT1A6 demonstrated significant association with HF patients' complications (OR (95% CI): 3.96 (1.42-11.02), p = 0.0057), (OR (95% CI): 3.55 (1.28-9.86), p = 0.011), (OR (95% CI): 5.37 (1.79-16.16), p = 0.0056) and OR (95% CI): 4.40 (1.06-18.20), p = 0.044]. Genotype polymorphisms could help to predict complications at pre- and post-LVAD implantation period, which will reduce mortality rate. Our research showed that patients can receive treatment with warfarin and aspirin with a personalized dosage and LVAD complications can be predicted by reference to their genotype polymorphisms in VKORC1, ITGB3 and UGT1A6 genes.

12.
Front Genet ; 12: 683515, 2021.
Article in English | MEDLINE | ID: mdl-34858467

ABSTRACT

Tuberculosis (TB) is an infectious disease that remains an essential public health problem in many countries. Despite decreasing numbers of new cases worldwide, the incidence of antibiotic-resistant forms (multidrug resistant and extensively drug-resistant) of TB is increasing. Next-generation sequencing technologies provide a high-throughput approach to identify known and novel potential genetic variants that are associated with drug resistance in Mycobacterium tuberculosis (Mtb). There are limited reports and data related to whole-genome characteristics of drug-resistant Mtb strains circulating in Kazakhstan. Here, we report whole-genome sequencing and analysis results of eight multidrug-resistant strains collected from TB patients in Kazakhstan. Genotyping and validation of all strains by MIRU-VNTR and spoligotyping methodologies revealed that these strains belong to the Beijing family. The spectrum of specific and potentially novel genomic variants (single-nucleotide polymorphisms, insertions, and deletions) related to drug resistance was identified and annotated. ResFinder, CARD, and CASTB antibiotic resistance databases were used for the characterization of genetic variants in genes associated with drug resistance. Our results provide reference data and genomic profiles of multidrug-resistant isolates for further comparative studies and investigations of genetic patterns in drug-resistant Mtb strains.

13.
Obes Surg ; 31(7): 3165-3176, 2021 07.
Article in English | MEDLINE | ID: mdl-33963974

ABSTRACT

BACKGROUND: Obesity and metabolic syndrome (MetS) reduce life expectancy and are challenging to resolve. This randomized controlled trial (RCT) of patients with obesity and MetS undergoing surgical vs nonsurgical treatment compared changes in BMI, and secondarily, telomere length (as a biomarker of life expectancy) and changes in MetS components (insulin resistance, dyslipidemia, hypertension). METHODS: Study design was a single-center, prospective, three-arm RCT. Group 1 patients underwent novel unstapled laparoscopic one anastomosis gastric bypass with an obstructive stapleless pouch and anastomosis (LOAGB-OSPAN); Group 2, stapled laparoscopic mini-gastric bypass-one anastomosis gastric bypass (LMGB-OAGB); and Group 3, nonsurgical weight loss therapy via a hypocaloric diet with energy restriction (HDER). The primary outcome measure was change in BMI; secondary outcome measures included change in leukocyte telomere length and other MetS components. RESULTS: Of 96 participants screened, 60 were randomly allocated to 3 groups: LOAGB-OSPAN group (n = 20), LMGB-OAGB group (n = 20), and HDER group (n = 20). At post-treatment month 12, respective BMI changes: BMI -12.13 (-8.34, -15.93); -16.04 (-11.7, 20.37); -2,76 (-3.84, -9.36) (p < 0.01). The two surgical groups experienced significant change in telomere length: LOAGB-OSPAN 2.02 (1.61, 2.41), p = 0.001; LMGB-OAGB 2.07 (1.72, 2.43), p = 0.001; and HDER 0.28 (0.22, 0.78), p = 0.26. The surgical groups were also more effective in treating MetS components. There were no deaths. Adverse events: LOAGB-OSPAN (n = 2) (Clavien-Dindo grade II); LMGB-OAGB (n = 8) (grade I (n = 6) and grade II (n = 2). CONCLUSIONS: Compared with hypocaloric diet therapy, both bariatric procedures resulted in greater BMI loss, and secondarily, a significant increase in telomere length, and greater MetS resolution. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03667469, registered on 11 September 2018.


Subject(s)
Gastric Bypass , Metabolic Syndrome , Obesity, Morbid , Diet , Humans , Metabolic Syndrome/genetics , Obesity, Morbid/surgery , Telomere , Treatment Outcome
14.
PeerJ ; 9: e10711, 2021.
Article in English | MEDLINE | ID: mdl-33552729

ABSTRACT

BACKGROUND: Ventricular tachycardia (VT) is a major cause of sudden cardiac death (SCD). Clinical investigations can sometimes fail to identify the underlying cause of VT and the event is classified as idiopathic (iVT). VT contributes significantly to the morbidity and mortality in patients with coronary artery disease (CAD) and dilated cardiomyopathy (DCM). Since mutations in arrhythmia-associated genes frequently determine arrhythmia susceptibility screening for disease-predisposing variants could improve VT diagnostics and prevent SCD in patients. METHODS: Ninety-two patients diagnosed with coronary heart disease (CHD), DCM, or iVT were included in our study. We evaluated genetic profiles and variants in known cardiac risk genes by targeted next generation sequencing (NGS) using a newly designed custom panel of 96 genes. We hypothesized that shared morphological and phenotypical features among these subgroups may have an overlapping molecular base. To our knowledge, this was the first study of the deep sequencing of 96 targeted cardiac genes in Kazakhstan. The clinical significance of the sequence variants was interpreted according to the guidelines developed by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) in 2015. The ClinVar and Varsome databases were used to determine the variant classifications. RESULTS: Targeted sequencing and stepwise filtering of the annotated variants identified a total of 307 unique variants in 74 genes, totally 456 variants in the overall study group. We found 168 mutations listed in the Human Genome Mutation Database (HGMD) and another 256 rare/unique variants with elevated pathogenic potential. There was a predominance of high- to intermediate pathogenicity variants in LAMA2, MYBPC3, MYH6, KCNQ1, GAA, and DSG2 in CHD VT patients. Similar frequencies were observed in DCM VT, and iVT patients, pointing to a common molecular disease association. TTN, GAA, LAMA2, and MYBPC3 contained the most variants in the three subgroups which confirm the impact of these genes in the complex pathogenesis of cardiomyopathies and VT. The classification of 307 variants according to ACMG guidelines showed that nine (2.9%) variants could be classified as pathogenic, nine (2.9%) were likely pathogenic, 98 (31.9%) were of uncertain significance, 73 (23.8%) were likely benign, and 118 (38.4%) were benign. CHD VT patients carry rare genetic variants with increased pathogenic potential at a comparable frequency to DCM VT and iVT patients in genes related to sarcomere function, nuclear function, ion flux, and metabolism. CONCLUSIONS: In this study we showed that in patients with VT secondary to coronary artery disease, DCM, or idiopathic etiology multiple rare mutations and clinically significant sequence variants in classic cardiac risk genes associated with cardiac channelopathies and cardiomyopathies were found in a similar pattern and at a comparable frequency.

15.
BMC Res Notes ; 14(1): 45, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33541395

ABSTRACT

OBJECTIVES: Kazakhstan is a Central Asian crossroad of European and Asian populations situated along the way of the Great Silk Way. The territory of Kazakhstan has historically been inhabited by nomadic tribes and today is the multi-ethnic country with the dominant Kazakh ethnic group. We sequenced and analyzed the whole-genomes of five ethnic healthy Kazakh individuals with high coverage using next-generation sequencing platform. This whole-genome sequence data of healthy Kazakh individuals can be a valuable reference for biomedical studies investigating disease associations and population-wide genomic studies of ethnically diverse Central Asian region. DATA DESCRIPTION: Blood samples have been collected from five ethnic healthy Kazakh individuals living in Kazakhstan. The genomic DNA was extracted from blood and sequenced. Sequencing was performed on Illumina HiSeq2000 next-generation sequencing platform. We sequenced and analyzed the whole-genomes of ethnic Kazakh individuals with the coverage ranging from 26 to 32X. Ranging from 98.85 to 99.58% base pairs were totally mapped and aligned on the human reference genome GRCh37 hg19. Het/Hom and Ts/Tv ratios for each whole genome ranged from 1.35 to 1.49 and from 2.07 to 2.08, respectively. Sequencing data are available in the National Center for Biotechnology Information SRA database under the accession number PRJNA374772.


Subject(s)
Asian People , Genome, Human , Asian People/genetics , Ethnicity/genetics , Humans , Kazakhstan , Whole Genome Sequencing
16.
Data Brief ; 33: 106416, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33102665

ABSTRACT

Drug-resistant tuberculosis (TB) is a major public health problem. Clinical Mycobacterium tuberculosis (MTB) isolate with Extensively drug-resistant tuberculosis (MTB-XDR) profile was subjected to whole-genome sequencing using a next-generation sequencing platform (NGS) Roche 454 GS FLX+ followed by bioinformatics sequence analysis. Quality of read was checked by FastQC, paired-end reads were trimmed using Trimmomatic. De novo genome assembly was conducted using Velvet v.1.2.10. The assembled genome of XDR-TB-1599 strain was functionally annotated using the PATRIC platform. Analysis of de novo assembled genome was performed using ResFinder, CARD, CASTB and TB-Profiler tools. MIRU_VNTR genotyping on 12 loci and spoligotyping have been performed for XDR-TB-1599 isolate. M. tuberculosis XDR-TB-1599 strain yielded an average read depth of 21-fold with overall 4 199 325 bp. The assembled genome contains 5528 protein-coding genes, including key drug resistance and virulence-associated genes and GC content of 65.4%. We identified that all proteins encoded by this strain contain conserved domains associated with the first-line anti-tuberculosis drugs such as rifampicin, isoniazid, streptomycin and ethionamide. TB-Profiler had higher average concordance results with phenotypic DST (drug susceptibility testing) in comparison with ResFinder, CARD, CASTB profiling to first-line (75% vs 50%) and second-line (25% vs 0%) of anti-TB drugs, correspondingly. To our knowledge, this is the first report of a highly annotated and characterized whole-genome sequence and de novo assembled XDR-TB M.tuberculosis strain isolated from a sputum of new TB case-patient from Kazakhstan performed on Roche 454 GS FLX+ platform. This report highlights an important role of whole-genome sequencing technology and analysis as an advanced approach for drug-resistance investigations of circulated TB isolates.

17.
PLoS One ; 10(7): e0132010, 2015.
Article in English | MEDLINE | ID: mdl-26168235

ABSTRACT

Alport syndrome is a genetic condition that results in hematuria, progressive renal impairment, hearing loss, and occasionally lenticonus and retinopathy. Approximately 80% of Alport syndrome cases are caused by X-linked mutations in the COL4A5 gene encoding type IV collagen. The objective of this study was to define the SNP profiles for COL4A5 in patients with hereditary nephritis and hematuria. For this, we examined four subjects from one Kazakh family clinically affected with X-linked Alport syndrome due to COL4A5 gene mutations. All 51 exons of the COL4A5 gene were screened by linkage analysis and direct DNA sequencing, resulting in the identification of a novel mutation (G641E) in exon 25. The mutation was found only in two affected family individuals but was not present in healthy family members or 200 unrelated healthy controls. This result demonstrates that this novel mutation is pathogenic and has meaningful implications for the diagnosis of patients with Alport syndrome.


Subject(s)
Collagen Type IV/genetics , Nephritis, Hereditary/genetics , Polymorphism, Single Nucleotide , Adult , Child , Exons , Family , Female , Genetic Linkage , Humans , Kazakhstan , Male , Middle Aged , Pedigree , Young Adult
18.
Genome Announc ; 3(3)2015 May 14.
Article in English | MEDLINE | ID: mdl-25977436

ABSTRACT

Here, we report the draft genome sequences of two clinical isolates of Mycobacterium tuberculosis (MTB-476 and MTB-489) isolated from sputum of Kazakh patients.

19.
Cent Asian J Glob Health ; 3(Suppl): 146, 2014.
Article in English | MEDLINE | ID: mdl-29805883

ABSTRACT

INTRODUCTION: The human genome sequence will underpin human biology and medicine in the next century, providing a single, essential reference to all genetic information. Extraordinary technological advances and decreases in the cost of DNA sequencing have made the possibility of whole genome sequencing (WGS) feasible as a highly accessible test for numerous indications. The international project "Genetic architecture of Kazakh population" is well underway to determine the complete DNA. Next generation sequencing is a powerful tool for genetic analysis, which will enable us to uncover the association of loci at specific sites in the genome associated with disease. The aim of this study was to introduce first data on WGS of 6 Kazakh individuals. METHODS: This pilot study is among the first WGS performed on 6 healthy Kazakh individuals, using next generation sequencing platform HiSeq2000, Illumina by manufacturer's protocols. All generated *.bcl files were simultaneously converted and demultiplexed using bcl2fasta application. Alignment of sequence reads performed using bwa-mem against human b19 reference genome. Sorting, removing of intermediate files, *.bam files assembling, and marking duplicates were performed using PicardTools package. GATK haplotype caller tool was used for variant calling. ClinVar, SNPedia, and Cosmic databases were processed to identify clinical genomic variants in 6 Kazakh whole genomes. Java Runtime Environment and R. Bioconductor packages were installed to perform raw data processing and run program scripts. RESULTS: The sequence alignment and mapping procedures on reference genome hg19 of each 6 healthy Kazakh individual were completed. Between 87,308,581,400 and 107,526,741,301 total base pairs were sequenced with average coverage x29.85. Between 98.85% and 99.58% base pairs were totally mapped and on average 96.07% were properly paired. Het/Hom and Ti/Tv ratios for each whole genome ranged from 1.35 to 1.52 and from 2.07 to 2.08, respectively. We compared and analyzed each genome with on existing clinical databases ClinVar, SNPedia, Cosmic and found from 20 to 25, from 269 to 288, from 7 to 12 SNP records, respectively. The availability of a reference Kazakh genome sequences provides the basis for studying the nature of sequence variation, particularly single nucleotide polymorphisms. CONCLUSION: The first whole genome sequencing of Kazakhs were performed. In this pilot study, we identified SNPs associated with different conditions. Further studies of WGS on Kazakh population are needed to identify possible unique genetic variants in Kazakhs.

20.
Cent Asian J Glob Health ; 3(Suppl): 147, 2014.
Article in English | MEDLINE | ID: mdl-29805884

ABSTRACT

INTRODUCTION: Atrial fibrillation (AF) is the most common sustained arrhythmia, and it results in significant morbidity and mortality. However, the pathogenesis of AF remains unclear to date. Recently, more pieces of evidence indicated that AF is a multifactorial disease resulting from the interaction between environmental factors and genetics. Recent studies suggest that genetic mutation of the slow delayed rectifier potassium channel (I(Ks)) may underlie AF. OBJECTIVE: To investigate sequence alterations of I(Ks) potassium channel genes KCNQ1, KCNE1 and KCNE2 in Kazakhstani patients with atrial fibrillation. METHODS: Genomic DNA of 69 cases with atrial fibrillation and 27 relatives were analyzed for mutations in all protein-coding exons and their flanking splice site regions of the genes KCNQ1 (NM_000218.2 and NM_181798.1), KCNE1 (NM_000219.2), and KCNE2 (NM_172201.1) using bidirectional sequencing on the ABI 3730xL DNA Analyzer (Applied Biosystems, Foster City, CA, USA). RESULTS: In total, a disease-causing mutation was identified in 39 of the 69 (56.5%) index cases. Of these, altered sequence variants in the KCNQ1 gene accounted for 14.5% of the mutations, whereas a KCNE1 mutation accounted for 43.5% of the mutations and KCNE2 mutation accounted for 1.4% of the mutations. The majority of the distinct mutations were found in a single case (80%), whereas 20% of the mutations were observed more than once. We found two sequence variants in KCNQ1 exon 13 (S546S G1638A) and exon 16 (Y662Y, C1986T) in ten patients (14.5%). In KCNE1 gene in exon 3 mutation, S59G A280G was observed in 30 of 69 patients (43.5%) and KCNE2 exon 2 T10K C29A in 1 patient (1.4%). Genetic cascade screening of 27 relatives to the 69 index cases with an identified mutation revealed 26.9% mutation carriers who were at risk of cardiac events such as syncope or sudden unexpected death. CONCLUSION: In this cohort of Kazakhstani index cases with AF, a disease-causing mutation was identified in 56.5 % of the referred patients. Further screening of mutations in other genes encoding cardiac ion channels is needed to clarify possible disease causing and founder mutations in Kazakhstani atrial fibrillation patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...