Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(4): 2039-2047, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38204419

ABSTRACT

The ability to emit narrow exciton lines, preferably with a clearly defined polarization, is one of the key conditions for the use of nanostructures based on III-VI monochalcogenides and other layered crystals in quantum technology to create non-classical light. Currently, the main method of their formation is exfoliation followed by strain and defect engineering. A factor limiting the use of epitaxy is the presence of different phases in the grown films. In this work, we show that control over their formation makes it possible to create structures with the desired properties. We propose Ga2Se3/GaSe nanostructures grown by van der Waals epitaxy with a high VI/III flux ratio as a source of narrow exciton lines. Actually, these nanostructures are a combination of allotropes: GaSe and Ga2Se3, consisting of the same atoms in different arrangements. The energy positions of the narrow lines are determined by the quantum confinement in Ga2Se3 inclusions of different sizes in the GaSe matrix, similar to quantum dots, and their linear polarization is due to the ordering of Ga vacancies in a certain crystalline direction in Ga2Se3. Such nanostructures exhibit single-photon emission with second-order correlation function g(2)(0) ∼ 0.10 at 10 K that makes them promising for quantum technologies.

2.
Nanomaterials (Basel) ; 13(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37177116

ABSTRACT

In recent years, single-photon sources (SPSs) based on the emission of a single semiconductor quantum dot (QD) have been actively developed. While the purity and indistinguishability of single photons are already close to ideal values, the high brightness of SPSs remains a challenge. The widely used resonant excitation with cross-polarization filtering usually leads to at least a two-fold reduction in the single-photon counts rate, since single-photon emission is usually unpolarized, or its polarization state is close to that of the exciting laser. One of the solutions is the use of polarization-selective microcavities, which allows one to redirect most of the QD emission to a specific polarization determined by the optical mode of the microcavity. In the present work, elliptical micropillars with distributed Bragg reflectors are investigated theoretically and experimentally as a promising design of such polarization-selective microcavities. The impact of ellipticity, ellipse area and verticality of the side walls on the splitting of the optical fundamental mode is investigated. The study of the near-field pattern allows us to detect the presence of higher-order optical modes, which are classified theoretically. The possibility of obtaining strongly polarized single-photon QD radiation associated with the short-wavelength fundamental cavity mode is shown.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770468

ABSTRACT

Single photon sources based on semiconductor quantum dots are one of the most prospective elements for optical quantum computing and cryptography. Such systems are often based on Bragg resonators, which provide several ways to control the emission of quantum dots. However, the fabrication of periodic structures with many thin layers is difficult. On the other hand, the coupling of single-photon sources with resonant nanoclusters made of high-index dielectric materials is known as a promising way for emission control. Our experiments and calculations show that the excitation of magnetic Mie-type resonance by linearly polarized light in a GaAs nanopillar oligomer with embedded InAs quantum dots leads to quantum emitters absorption efficiency enhancement. Moreover, the nanoresonator at the wavelength of magnetic dipole resonance also acts as a nanoantenna for a generated signal, allowing control over its radiation spatial profile. We experimentally demonstrated an order of magnitude emission enhancement and numerically reached forty times gain in comparison with unstructured film. These findings highlight the potential of quantum dots coupling with Mie-resonant oligomers collective modes for nanoscale single-photon sources development.

4.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500892

ABSTRACT

In this paper, we studied the role of the crystal structure in spheroidal CdSe nanocrystals on the band-edge exciton fine structure. Ensembles of zinc blende and wurtzite CdSe nanocrystals are investigated experimentally by two optical techniques: fluorescence line narrowing (FLN) and time-resolved photoluminescence. We argue that the zero-phonon line evaluated by the FLN technique gives the ensemble-averaged energy splitting between the lowest bright and dark exciton states, while the activation energy from the temperature-dependent photoluminescence decay is smaller and corresponds to the energy of an acoustic phonon. The energy splittings between the bright and dark exciton states determined using the FLN technique are found to be the same for zinc blende and wurtzite CdSe nanocrystals. Within the effective mass approximation, we develop a theoretical model considering the following factors: (i) influence of the nanocrystal shape on the bright-dark exciton splitting and the oscillator strength of the bright exciton, and (ii) shape dispersion in the ensemble of the nanocrystals. We show that these two factors result in similar calculated zero-phonon lines in zinc blende and wurtzite CdSe nanocrystals. The account of the nanocrystals shape dispersion allows us to evaluate the linewidth of the zero-phonon line.

5.
Nanomaterials (Basel) ; 12(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35564271

ABSTRACT

We report on single-photon emitters for the telecommunication O-band (1260-1360 nm), which comprise an InAs/(In)GaAs quantum dot with asymmetric barriers, placed inside a semiconductor tapered nanocolumn acting as a photonic nanoantenna. The implemented design of the barriers provides a shift in the quantum dot radiation wavelength towards the O-band, while the nanoantenna collects the radiation and ensures its effective output. With non-resonant optical pumping, the average count rate of emitted single photons exceeds 10 MHz with the second-order correlation function g(2)(0) = 0.18 at 8 K.

6.
Nanoscale ; 13(41): 17566-17575, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34661218

ABSTRACT

We investigated multilayer plates prepared by exfoliation from a high-quality MoS2 crystal and revealed that they represent a new object - a van der Waals homostructure consisting of a bulk core and a few detached monolayers on its surface. This architecture comprising elements with different electron band structures leads to specific luminescence, when the broad emission band from the core is cut by the absorption peaks of strong exciton resonances in the surface monolayers. The exfoliated flakes exhibit strong optical anisotropy. We have observed linear to circular polarization conversion that reaches 15% for normally incident light in transmission geometry. This background effect is due to the fluctuations of the c axis relative to the normal, whereas the pronounced resonance contribution is explained by the polarization anisotropy of the excitons localized in the stripes of the dissected surface monolayers.

7.
Nanomaterials (Basel) ; 11(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916804

ABSTRACT

We report on single photon emitters for the green-yellow spectral range, which comprise a CdSe/ZnSe quantum dot placed inside a semiconductor tapered nanocolumn acting as a multimode nanoantenna. Despite the presence of many optical modes inside, such a nanoantenna is able to collect the quantum dot radiation and ensure its effective output. We demonstrate periodic arrays of such emitters, which are fabricated by focused ion beam etching from a II-VI/III-V heterostructure grown using molecular beam epitaxy. With non-resonant optical pumping, the average count rate of emitted single photons exceeds 5 MHz with the second-order correlation function g(2)(0) = 0.25 at 220 K. Such single photon emitters are promising for secure free space optical communication lines.

8.
Nanomaterials (Basel) ; 10(2)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093325

ABSTRACT

We measure low-temperature micro-photoluminescence spectra along a MoS 2 nanotube, which exhibit the peaks of the optical whispering gallery modes below the exciton resonance. The energy fluctuation and width of these peaks are determined by the changes of the nanotube wall thickness and propagation of the optical modes along the nanotube axis, respectively. We demonstrate the potential of the high-quality nanotubes for realization of the strong coupling between exciton and optical modes when the Rabi splitting can reach 400 meV. We show how the formation of exciton-polaritons in such structures will be manifested in the micro-photoluminescence spectra and analyze the conditions needed to realize that.

SELECTION OF CITATIONS
SEARCH DETAIL
...