Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(9): 10080-10089, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463326

ABSTRACT

Carbon-based supercapacitor electrodes are generally restricted in energy density, as they rely exclusively on electric double-layer capacitance (EDLC). The introduction of redox-active organic molecules to obtain pseudocapacitance is a promising route to develop electrode materials with improved energy densities. In this work, we develop a porous nitrogen-doped reduced graphene oxide and 9,10-phenanthrenequinone composite (N-HtrGO/PQ) via a facile one-step physical adsorption method. The electrochemical evaluation of N-HtrGO/PQ using cyclic voltammetry showed a high capacitance of 605 F g-1 in 1 M H2SO4 when the composite consisted of 30% 9,10-phenanthrenequinone and 70% N-HtrGO. The measured capacitance significantly exceeded pure N-HtrGO without the addition of redox-active molecules (257 F g-1). In addition to promising capacitance, the N-HtrGO/30PQ composite showed a capacitance retention of 94.9% following 20,000 charge/discharge cycles. Based on Fourier transform infrared spectroscopy, we postulate that the strong π-π interaction between PQ molecules and the N-HtrGO substrate enhances the specific capacitance of the composite by shortening pathways for electron transfer while improving structural stability.

2.
Nat Commun ; 15(1): 938, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296966

ABSTRACT

Electrochemical conversion of CO2 offers a sustainable route for producing fuels and chemicals. Pd-based catalysts are effective for converting CO2 into formate at low overpotentials and CO/H2 at high overpotentials, while undergoing poorly understood morphology and phase structure transformations under reaction conditions that impact performance. Herein, in-situ liquid-phase transmission electron microscopy and select area diffraction measurements are applied to track the morphology and Pd/PdHx phase interconversion under reaction conditions as a function of electrode potential. These studies identify the degradation mechanisms, including poisoning and physical structure changes, occurring in PdHx/Pd electrodes. Constant potential density functional theory calculations are used to probe the reaction mechanisms occurring on the PdHx structures observed under reaction conditions. Microkinetic modeling reveals that the intercalation of *H into Pd is essential for formate production. However, the change in electrochemical CO2 conversion selectivity away from formate and towards CO/H2 at increasing overpotentials is due to electrode potential dependent changes in the reaction energetics and not a consequence of morphology or phase structure changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...