Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 16022, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163483

ABSTRACT

A nanomechanical oscillator can be used as a sensitive probe of a small linearized mechanical force. We propose a simple quantum optomechanical scheme using a coherent light mode in the cavity and weak short-pulsed light-matter interactions. Our main result is that if we transfer some displacement to the mechanical mode in an initialization phase, then a much weaker optomechanical interaction is enough to obtain a high-precision multiparameter estimation of the unknown force. This approach includes not only estimating the displacement caused by the force but also simultaneously observing the phase shift and squeezing of the mechanical mode. We show that the proposed scheme is robust against typical experimental imperfections and demonstrate the feasibility of our scheme using orders of magnitude weaker optomechanical interactions than in previous related works. Thus, we present a simple, robust estimation scheme requiring only very weak light-matter interactions, which could open the way to new nanomechanical sensors.

2.
Opt Express ; 25(16): 18974-18989, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041088

ABSTRACT

We propose a setup allowing to entangle two directly non-interacting radiation modes applying four sequential pulsed quantum resonant interactions with a noisy vibrational mode of a mechanical oscillator which plays the role of the mediator. We analyze Gaussian entanglement of the radiation modes generated by the transducer and confirm that the noisy mechanical mode can mediate generation of entanglement. The entanglement, however, is limited if the interaction gains are not individually optimized. We prove the robustness of the transducer to optical losses and the influence of the mechanical bath and propose the ways to achieve maximal performance through the individual optimization.

3.
Sci Rep ; 7: 46764, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28436461

ABSTRACT

We consider transfer of a highly nonclassical quantum state through an optomechanical system. That is we investigate a protocol consisting of sequential upload, storage and reading out of the quantum state from a mechanical mode of an optomechanical system. We show that provided the input state is in a test-bed single-photon Fock state, the Wigner function of the recovered state can have negative values at the origin, which is a manifest of nonclassicality of the quantum state of the macroscopic mechanical mode and the overall transfer protocol itself. Moreover, we prove that the recovered state is quantum non-Gaussian for wide range of setup parameters. We verify that current electromechanical and optomechanical experiments can test this complete transfer of single photon.

SELECTION OF CITATIONS
SEARCH DETAIL
...