Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(2): e06204, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33615010

ABSTRACT

In Thailand, the palm oil industry produces a huge amount of palm oil mill effluent (POME), mostly used for electricity generation through biogas production. Co-digestion with other waste can further improve biogas yield and solve waste management problems. Most previous studies relied on biochemical methane potential (BMP) assay or batch co-digestion to obtain the optimal mixing ratio, ignoring the kinetic part or treat it for sole discussion of the results. This work directly uses mechanistic models based on Monod kinetics to describe the experimental results obtained from the co-digestion of POME (40 ml, BMP = 281.2 mlCH4/gCODadded)) with chicken manure (CM) (0-50 g) and crude glycerol (Gly) (0-10 ml). The best mixing ratio between CM and POME was 5 gCM: 40 mlPOME (BMP = 276.9 mlCH4/gCODadded). The best ratio for Gly and POME was 2 mlGly: 40 mlPOME (BMP = 211.9 mlCH4/gCODadded). Adding Gly only 2 mlGly/40 mlPOME doubled the amount of biogas. Hence, crude glycerol is a good substrate for on-demand biogas output. The co-digestion increases the methane output but with a decreased yield. A multi-substrate Monod model was developed based on the levels of digestion difficulty. A partial-least squared fitting was used to estimate its main parameters. All parameters included in the model passed the significant tests at a 95% confidence level. The model can describe the experimental results very well, predict observable state variables of batch co-digestion, and allow a simple extension for continuous co-digestion dynamics. A limited continuous experiment was conducted to confirm the applicability of the model parameters of POME digestion obtained from BMP tests to predict a continuous AD. The results show good potential but must be carefully interpreted. It is generally possible and practical to directly obtain design and operational parameters from BMP assays based on only accumulated biogas curves and initial and final COD/VS.

2.
Heliyon ; 6(10): e05151, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33083612

ABSTRACT

Kiln drying of rubberwood lumbers is a complex transport phenomenon for realistic modeling and simulation. To decouple this complexity, researchers usually divide their research into two parts. The first one is single-lumber drying kinetics to describe how wood lumber responds to its surface conditions. Then they combine this drying kinetics with a lumped transport model or dispersion model or computational fluid dynamics. The mathematical models are then solved numerically to predict the industrial kiln drying behaviors. This work focuses on the drying kinetics of stacked rubberwood lumbers using hot air at different air velocity (0.5, 1.5, 2.5, 3.5, 4.0 m/s), relative humidity (6-67% relative humidity (RH)) and temperature (60-100 °C). The drying kinetics followed the conventional drying theory. However, the two drying periods, namely constant and falling rate (CRP and FRP), were not distinct. As the air velocity increased, the transition from CRP to FRP is faster. The middle of the transition period (at critical moisture content, CMC) moves closer to the fiber saturation point (FSP). The overall mass transfer coefficients in the falling rate period for stacked rubberwood drying were lower than those predicted by the Ananias correlation. Hence, a modified formula was proposed, representing the overall moisture transfer coefficients as a function of air velocity, temperature, relative humidity, and lumbers thickness for the range of variables under investigation satisfactorily. In general, the drying rate and the overall moisture transfer coefficient increased with increasing air velocity, drying temperature, and decreasing RH. Relative humidity directly affects the driving force of moisture transfer rate because higher RH is associated with higher equilibrium moisture content. A lumped parameter model for kiln drying was also developed. After being integrated with the estimated mass transfer coefficient, the model can predict the moisture profiles in lab-scale kiln drying satisfactory, although the model needs more validation data. These kinetic parameters and correlation for stacked rubberwood drying can be used in more complex models and process optimization in future research.

3.
Heliyon ; 6(5): e04019, 2020 May.
Article in English | MEDLINE | ID: mdl-32490240

ABSTRACT

The amount of palm oil mill residues increases rapidly and will become a severe problem in the future. One potential technique for alleviating this concerning environmental problem is to convert these residues into biochar by the pyrolysis process. Pyrolysis of three types of palm oil mill residues (namely, palm kernel shells, empty palm fruit bunches, and oil palm fibers) was conducted in a fixed bed reactor at 500 °C and 2 L/min of nitrogen flow rate for 60 min. The optimization of biochar production was performed using the Box-Behnken design and analyzed using response surface methodology. The effects of three potential factors, including pyrolysis temperatures, nitrogen flow rates, and biomass particle sizes, were studied. The results showed that the highest biochar yield (44.91 wt%) was obtained from pyrolysis of palm kernel shells at 525 °C with a nitrogen flow rate of 2 L/min and a particle size of 750 µm. Application of biochar produced from palm kernel shells for carbon dioxide capture was tested in a packed bed adsorber of 3.0 g of biochar sample by flowing 1,400 ppm of carbon dioxide in the gas feed mixture at 2.5 L/min. The capacity of the biochar sample for CO2 adsorption was 0.46 mmol/g.

SELECTION OF CITATIONS
SEARCH DETAIL
...