Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Sci Nutr ; 67(8): 919-28, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27396321

ABSTRACT

Research covered six variants: control, unfertilized carrots and carrots fertilized with: KIO3, Na2SeO4, Na2SeO3, KIO3 and simultaneously with Na2SeO4, and fertilized with KIO3 and simultaneously Na2SeO3. Carrots enriched with iodate or selenite, or both iodate and selenite, were characterized by higher amount of these minerals. Changes to the content of micro- and macroelements, during the cooking time of the carrots, both in peeled and unpeeled carrots, did not head in the same direction (increase, decrease and no change). However, cooking an unpeeled carrot generally resulted in the increased content of polyphenol and carotenoids. On the other hand, cooking peeled carrots led to a decrease in the content of polyphenol and a general lack of change in carotenoid content in relation to the unpeeled cooked carrot. During cooking, the antioxidant activity of the carrot being assessed changed together with the direction of changes in polyphenol content but not in line with the direction of changes in carotenoids.


Subject(s)
Daucus carota/chemistry , Antioxidants/analysis , Carotenoids/analysis , Cooking , Daucus carota/growth & development , Dietary Supplements/analysis , Fertilizers , Food Analysis , Food Handling , Humans , Iodates , Micronutrients/analysis , Minerals/analysis , Nutritional Requirements , Nutritive Value , Polyphenols/analysis , Potassium Compounds , Selenious Acid
2.
Front Plant Sci ; 7: 730, 2016.
Article in English | MEDLINE | ID: mdl-27303423

ABSTRACT

The low content of iodine (I) and selenium (Se) forms available to plants in soil is one of the main causes of their insufficient transfer in the soil-plant-consumer system. Their deficiency occurs in food in the majority of human and farm animal populations around the world. Both elements are classified as beneficial elements. However, plant response to simultaneous fertilization with I and Se has not been investigated in depth. The study (conducted in 2012-2014) included soil fertilization of carrot cv. "Kazan F1" in the following combinations: (1) Control; (2) KI; (3) KIO3; (4) Na2SeO4; (5) Na2SeO3; (6) KI+Na2SeO4; (7) KIO3+Na2SeO4; (8) KI+Na2SeO3; (9) KIO3+Na2SeO3. I and Se were applied twice: before sowing and as top-dressing in a total dose of 5 kg I⋅ha(-1) and 1 kg Se⋅ha(-1). No negative effects of I and Se fertilization were noted with respect to carrot yield. Higher accumulation and the uptake by leaves and storage roots of I and Se were obtained after the application of KI than KIO3, as well as of Na2SeO4 than Na2SeO3, respectively. Transfer factor values for leaves and roots were about a dozen times higher for Se than for I. Selenomethionine content in carrot was higher after fertilization with Na2SeO4 than with Na2SeO3. However, it was the application of Na2SeO3, KI+Na2SeO3 and KIO3+Na2SeO3 that resulted in greater evenness within the years and a higher share of Se from selenomethionine in total Se in carrot plants. Consumption of 100 g f.w. of carrots fertilized with KI+Na2SeO3 and KIO3+Na2SeO3 can supply approximately or slightly exceed 100% of the Recommended Daily Allowance for I and Se. Moreover, the molar ratio of I and Se content in carrot fertilized with KI+Na2SeO3 and KIO3+Na2SeO3 was the best among the research plots.

3.
Biol Trace Elem Res ; 174(2): 347-355, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27129316

ABSTRACT

Iodine is an essential trace element for humans. Foliar application of micronutrients is successfully used in order to increase the concentration of essential elements in vegetables. The aim of this study was to evaluate the iodine absorption in the rat organism fed foliar biofortified lettuce. The presented study was consisted of the vegetative and animal experiment. In the vegetative experiment with lettuce, two combinations of foliar application were used: (1) control-without iodine application and (2) iodine application in the potassium iodide (KI) form. In the animal experiment, Wistar rats were divided to four groups, which received one of four diets: (1) C-control diet containing iodine in the KI form, (2) D-diet deficient in iodine, (3) D + BL-diet containing biofortified lettuce, and (4) D + CL-diet containing control lettuce (as the only source of iodine in diet, respectively). The diets contained 0.260, 0.060, 0.254 and 0.075 mg I/kg, respectively. In order to determine the iodine absorption in the rat organisms, the content of this trace element was measured in urine, faeces and in selected organs with the use of the ICP-OES technique. Foliar application of the KI increased the content of iodine in lettuce. The rats from the D + BL group excreted significantly less iodine in their urine and faeces and also accumulated more iodine in the organs than the rats from the C group. Iodine with biofortified lettuce was much bioavailable for rodents than iodine from control diet. Biofortified lettuce can be a source of iodine in a diet of human and can improve iodine nutrition.


Subject(s)
Feces , Food, Fortified , Iodine/urine , Lactuca , Potassium Iodide , Animals , Humans , Male , Organ Specificity/drug effects , Potassium Iodide/pharmacokinetics , Potassium Iodide/pharmacology , Rats , Rats, Wistar
4.
PLoS One ; 11(4): e0152680, 2016.
Article in English | MEDLINE | ID: mdl-27043135

ABSTRACT

Iodine is one of the trace elements which are essential for mammalian life. The major objective of iodine biofortification of plants is to obtain food rich in this trace element, which may increase its consumption by various populations. Additionally, it may reduce the risk of iodine deficiency diseases. In this research for the first time we have assessed the bioavailability of iodine from raw or cooked carrot biofortified with this trace element on iodine concentration in selected tissues and various biochemical parameters as well as mRNA expression of some genes involved in iodine metabolism in Wistar rats. Statistically, a significantly higher iodine level was determined in urine, faeces and selected tissues of rats fed a diet containing biofortified raw carrot as compared to a diet without iodine and a diet containing control cooked carrot. Biofortified raw carrot significantly increased triiodothyronine concentration as compared to animals from other experimental groups. The highest thyroid stimulating hormone level was determined in rats fed control cooked carrots. mRNA expression of selected genes was affected by different dietary treatment in rats' hearts. Biofortified raw and cooked carrot could be taken into account as a potential source of iodine in daily diets to prevent iodine deficiency in various populations.


Subject(s)
Animal Feed , Daucus carota , Fertilizers , Food, Fortified , Iodine , Soil , Thyrotropin/metabolism , Triiodothyronine/metabolism , Animals , Iodine/pharmacokinetics , Iodine/pharmacology , Male , Rats , Rats, Wistar
5.
PLoS One ; 11(1): e0147336, 2016.
Article in English | MEDLINE | ID: mdl-26799209

ABSTRACT

Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Iodine/pharmacology , Lactuca/metabolism , Plant Extracts/pharmacology , Transcription, Genetic/drug effects , Apoptosis/drug effects , Caco-2 Cells , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Food, Fortified , Gene Expression Profiling , Humans , Mitochondria/metabolism , Plant Leaves/metabolism , Potassium Iodide/pharmacology , Transcription, Genetic/genetics , Transcriptome/genetics
6.
Gene ; 448(2): 214-20, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19539732

ABSTRACT

Miniature inverted-repeat transposable elements (MITEs) are small and high copy number transposons, related to and mobilized by some class II autonomous elements. New MITE families can be identified by computer-based mining of sequenced genomes. We describe four MITE families related to MtPH transposons mined de novo in the genome of Medicago truncatula, together with one previously described family MITRAV. Different levels of their intra-family sequence diversity and insertion polymorphism indicate that they were active at different evolutionary periods. MetMIT1 and MITRAV families were uniform in sequence and produced highly polymorphic insertion sites in 26 ecotypes representing a M. truncatula core collection. A subset of insertions was present only in the reference genome of A17 'Jemalong', suggesting that the two families might have been active in the course of domestication. In contrast, all investigated insertions of the MetMIT2 family were fixed, showing that it was not active after M. truncatula speciation. MetMIT1 elements were divided into three clusters, i.e. (I) relatively heterogenous copies fixed in the genome of M. truncatula, (II) uniform but also mostly fixed, and (III) uniform and polymorphic among the investigated accessions. It might reflect the evolutionary history of the MetMIT1 family, showing multiple bursts of activity. A number of MetMIT1 and MITRAV insertions were present within 1 kb upstream or downstream the ORF. A high proportion of insertions proximal to coding regions was unique to A17 'Jemalong'.


Subject(s)
DNA Transposable Elements/genetics , Inverted Repeat Sequences/genetics , Medicago truncatula/genetics , Base Sequence , Chromosome Mapping , Gene Dosage , Genome, Plant/genetics , Molecular Sequence Data , Mutagenesis, Insertional/physiology , Open Reading Frames/genetics , Polymorphism, Genetic , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...