Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Sci Rep ; 14(1): 8640, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622161

ABSTRACT

The incidence rate of tuberculosis in prisons is estimated to be 8 times greater than that in the general population in Madagascar. Our objectives were to estimate the prevalence of pulmonary tuberculosis and HIV infection among prisoners and to identify risk factors associated with tuberculosis. We conducted a cross-sectional study at the central prison of Antananarivo from March to July 2021. Individual male and female inmates aged ≥ 13 years who had lived in the prison for at least three months prior to the study period were included as participants. Acid-fast bacilli detection by microscopy and/or culture, an intradermal tuberculin test, a chest X-ray, and a rapid diagnostic orientation test for HIV were performed. Among 748 participants, 4 (0.5%) were confirmed to have pulmonary tuberculosis. Overall, 14 (1.9%) patients had "confirmed" or "probable" tuberculosis [0.90-2.84, 95% CI]. The proportion of participants with latent tuberculosis infection was 69.6% (517/743) based on a positive tuberculin test without clinical symptoms or radiography images indicating tuberculosis. Out of 745 HIV screening tests, three showed reactive results (0.4%). Age (OR = 4.4, 95% CI [1.4-14.0]) and prior tuberculosis treatment (or episodes) were found to be associated with confirmed and probable tuberculosis.


Subject(s)
HIV Infections , Prisoners , Tuberculosis, Pulmonary , Tuberculosis , Humans , Male , Female , HIV Infections/epidemiology , Prevalence , Cross-Sectional Studies , Madagascar/epidemiology , Tuberculosis/epidemiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology , Risk Factors
2.
Emerg Infect Dis ; 30(2): 289-298, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270131

ABSTRACT

Pneumonic plague (PP) is characterized by high infection rate, person-to-person transmission, and rapid progression to severe disease. In 2017, a PP epidemic occurred in 2 Madagascar urban areas, Antananarivo and Toamasina. We used epidemiologic data and Yersinia pestis genomic characterization to determine the sources of this epidemic. Human plague emerged independently from environmental reservoirs in rural endemic foci >20 times during August-November 2017. Confirmed cases from 5 emergences, including 4 PP cases, were documented in urban areas. Epidemiologic and genetic analyses of cases associated with the first emergence event to reach urban areas confirmed that transmission started in August; spread to Antananarivo, Toamasina, and other locations; and persisted in Antananarivo until at least mid-November. Two other Y. pestis lineages may have caused persistent PP transmission chains in Antananarivo. Multiple Y. pestis lineages were independently introduced to urban areas from several rural foci via travel of infected persons during the epidemic.


Subject(s)
Epidemics , Plague , Yersinia pestis , Humans , Plague/epidemiology , Yersinia pestis/genetics , Madagascar/epidemiology , Genomics
3.
PLoS Negl Trop Dis ; 17(9): e0011538, 2023 09.
Article in English | MEDLINE | ID: mdl-37672517

ABSTRACT

BACKGROUND: Human plague cases are reported annually in the central highland regions of Madagascar, where the disease is endemic. The socioenvironmental characteristics and lifestyles of the populations of the central highland localities could be linked to this endemicity. The aim of this study was to determine socioenvironmental determinants that may be associated with plague risk and explain this variation in epidemiological contexts. METHODS: The current study was based on the distribution of plague cases between 2006 and 2015 that occurred in localities of districts positioned in the central highlands. Household surveys were performed from June to August 2017 using a questionnaire and direct observations on the socioenvironmental aspects of households in selected localities. Bivariate and multivariate analyses were performed to highlight the socioenvironmental parameters associated with plague risk in both districts. RESULTS: A total of 503 households were surveyed, of which 54.9% (276/503) were in Ambositra and 45.1% (227/503) were in Tsiroanomandidy. Multivariate analyses showed that thatched roofs [adjusted odds ratio (AOR): 2.63; 95% confidence interval (95% CI): 1.78-3.88] and ground floor houses [AOR: 2.11; 95% CI: 1.3-3.45-] were significantly associated with the vulnerability of a household to plague risk (p value<0.05). CONCLUSIONS: Plague risk in two districts of the Malagasy central highlands is associated with human socioenvironmental characteristics. Socioenvironmental characteristics are parameters expressing spatial heterogeneity through the difference in epidemiological expression of the plague in Ambositra and Tsiroanomandidy. These characteristics could be used as indicators of vulnerability to plague risk in plague-endemic areas.


Subject(s)
Plague , Social Determinants of Health , Social Environment , Humans , Black People/statistics & numerical data , Madagascar/epidemiology , Multivariate Analysis , Social Determinants of Health/statistics & numerical data , Risk , Plague/epidemiology
4.
Viruses ; 15(8)2023 08 08.
Article in English | MEDLINE | ID: mdl-37632049

ABSTRACT

Arboviruses have been shown to circulate in Madagascar, including West Nile, dengue, and chikungunya viruses, though the extent of their circulation remains poorly documented. We estimated the seroprevalence of these three arboviruses in Madagascar and determined risk factors associated with seropositivity. Serum samples obtained from 1680 individuals surrounding the Sentinel Health Centers network in all regions of the country were analyzed using ELISA and hemagglutination inhibition assays for dengue, chikungunya, and West Nile viruses IgG antibodies, and multivariate logistic regression models were run. Overall, 6.5% [IC 95% 3.2-9.9] were seropositive for dengue virus, predominantly of Dengue serotype 1, 13.7% [IC 95% 6.5-20.9] for chikungunya virus, and 12.7% [IC 95% 9.0-16.5] for West Nile virus. There was no association with age, showing that dengue and chikungunya viruses were likely recently introduced. Eastern and Northern parts were more affected by dengue and chikungunya viruses, while West Nile virus seemed to circulate in all parts of the country. Dengue and chikungunya seropositivity were notably associated with high levels of vegetation, as well as frequent work in the forest, and West Nile seropositivity with the presence of cultivated areas, as well as standard of living. This analysis gives a new insight into arboviruses circulation and transmission patterns in Madagascar.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue , West Nile virus , Humans , Chikungunya Fever/epidemiology , Immunoglobulin G , Madagascar/epidemiology , Seroepidemiologic Studies , Risk Factors , Dengue/epidemiology
5.
BMC Med ; 20(1): 322, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36192774

ABSTRACT

BACKGROUND: Malaria remains a leading cause of morbidity and mortality worldwide, with progress in malaria control stalling in recent years. Proactive community case management (pro-CCM) has been shown to increase access to diagnosis and treatment and reduce malaria burden. However, lack of experimental evidence may hinder the wider adoption of this intervention. We conducted a cluster randomized community intervention trial to assess the efficacy of pro-CCM at decreasing malaria prevalence in rural endemic areas of Madagascar. METHODS: Twenty-two fokontany (smallest administrative unit) of the Mananjary district in southeast Madagascar were selected and randomized 1:1 to pro-CCM (intervention) or conventional integrated community case management (iCCM). Residents of all ages in the intervention arm were visited by a community health worker every 2 weeks from March to October 2017 and screened for fever; those with fever were tested by a rapid diagnostic test (RDT) and treated if positive. Malaria prevalence was assessed using RDTs on all consenting study area residents prior to and following the intervention. Hemoglobin was measured among women of reproductive age. Intervention impact was assessed via difference-in-differences analyses using logistic regressions in generalized estimating equations. RESULTS: A total of 27,087 and 20,475 individuals participated at baseline and endline, respectively. Malaria prevalence decreased from 8.0 to 5.4% in the intervention arm for individuals of all ages and from 6.8 to 5.7% in the control arm. Pro-CCM was associated with a significant reduction in the odds of malaria positivity in children less than 15 years (OR = 0.59; 95% CI [0.38-0.91]), but not in older age groups. There was no impact on anemia among women of reproductive age. CONCLUSION: This trial suggests that pro-CCM approaches could help reduce malaria burden in rural endemic areas of low- and middle-income countries, but their impact may be limited to younger age groups with the highest malaria burden. TRIAL REGISTRATION: NCT05223933. Registered on February 4, 2022.


Subject(s)
Case Management , Malaria , Aged , Child , Community Health Workers , Female , Humans , Infant, Newborn , Madagascar/epidemiology , Malaria/diagnosis , Malaria/epidemiology , Malaria/prevention & control , Prevalence
6.
BMC Public Health ; 21(1): 1102, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34107908

ABSTRACT

BACKGROUND: Plague is endemic to the central highlands of Madagascar. Sporadic human cases or outbreaks can occur annually in these areas. In Madagascar, the associations between endemicity and the knowledge, attitudes and practices (KAP) of the population with regard to this disease remain poorly documented. The aim of this study was to assess KAP related to plague among the population living in the central highlands. METHODS: A cross-sectional survey was conducted in the general population from June to August 2017. Based on the reported cases of plague between 2006 and 2015 in two central highland districts, a KAP questionnaire was administered in the population. Based on the proportion of correct answers provided by respondents, KAP scores were classified into three KAP categories: low (< Mean - SD), medium (Mean ± SD) and good (> Mean + SD). Multivariate analyses were performed to determine the associations between population KAP scores related to plague and sociodemographic and epidemiological factors. In addition, individual interviews and focus groups with health professionals were conducted to assess plague perception. RESULTS: A total of 597 individuals participated in the survey; 20% (n = 119) had a good KAP score, 62% (n = 370) a medium KAP score and 18% (n = 108) a low KAP score. Among the 119 respondents with good KAP scores, 80% (n = 95) resided in Ambositra district, and 20% (n = 24) resided in Tsiroanomandidy district. According to the health professionals in the two districts, populations in endemic areas are well aware of the plague. There were significant associations (p <  0.05) of not owning a mobile phone, having no contact with a former plague case, and living in Tsiroanomandidy district with a lower KAP score. CONCLUSION: The results of the study showed the need to adapt plague control interventions to the local context to allow a better allocation of human and financial resources. Doing so would minimize delays in patient management care and increase community resilience to plague epidemics.


Subject(s)
Plague , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Health Knowledge, Attitudes, Practice , Humans , Madagascar/epidemiology , Plague/epidemiology
7.
BMC Public Health ; 21(1): 1112, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112118

ABSTRACT

BACKGROUND: Human plague cases, mainly in the bubonic form, occur annually in endemic regions of the central highlands of Madagascar. The aim of this study was to compare the dynamics of the epidemiological features of the human plague in two districts of the central highlands region. METHODS: In Madagascar, all clinically suspected plague cases that meet clinical and epidemiological criteria specified in the World Health Organization (WHO) standard case definition are reported to the national surveillance system. Data on plague cases reported between 2006 and 2015 in the districts of Ambositra and Tsiroanomandidy were analysed. Statistical comparisons between the epidemiological characteristics of the two districts were conducted. RESULTS: A total of 840 cases of plague were reported over the studied period, including 563 (67%) probable and confirmed cases (P + C). Out of these P + C cases, nearly 86% (488/563) were cases of bubonic plague. Reported clinical forms of plague were significantly different between the districts from 2006 to 2015 (p = 0.001). Plague cases occurred annually in a period of 10 years in the Tsiroanomandidy district. During the same period, the Ambositra district was characterized by a one-year absence of cases. CONCLUSION: The differences in the epidemiological situation with respect to the plague from 2006 to 2015 in the two central highlands districts may suggest that several factors other than biogeographical factors determine the representation of the plague and its dynamics in this region. Considering the epidemiological situations according to the specific contexts of the districts could improve the results in the fight against the plague in Madagascar.


Subject(s)
Plague , Humans , Incidence , Madagascar/epidemiology , Plague/epidemiology , World Health Organization
8.
Influenza Other Respir Viruses ; 15(4): 457-468, 2021 07.
Article in English | MEDLINE | ID: mdl-33586912

ABSTRACT

BACKGROUND: Following the first detection of SARS-CoV-2 in passengers arriving from Europe on 19 March 2020, Madagascar took several mitigation measures to limit the spread of the virus in the country. METHODS: Nasopharyngeal and/or oropharyngeal swabs were collected from travellers to Madagascar, suspected SARS-CoV-2 cases and contact of confirmed cases. Swabs were tested at the national reference laboratory using real-time RT-PCR. Data collected from patients were entered in an electronic database for subsequent statistical analysis. All distribution of laboratory-confirmed cases were mapped, and six genomes of viruses were fully sequenced. RESULTS: Overall, 26,415 individuals were tested for SARS-CoV-2 between 18 March and 18 September 2020, of whom 21.0% (5,553/26,145) returned positive. Among laboratory-confirmed SARS-CoV-2-positive patients, the median age was 39 years (IQR: 28-52), and 56.6% (3,311/5,553) were asymptomatic at the time of sampling. The probability of testing positive increased with age with the highest adjusted odds ratio of 2.2 [95% CI: 1.9-2.5] for individuals aged 49 years and more. Viral strains sequenced belong to clades 19A, 20A and 20B indicative of several independent introduction of viruses. CONCLUSIONS: Our study describes the first wave of the COVID-19 in Madagascar. Despite early strategies in place Madagascar could not avoid the introduction and spread of the virus. More studies are needed to estimate the true burden of disease and make public health recommendations for a better preparation to another wave.


Subject(s)
COVID-19/epidemiology , Adult , Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Epidemiological Monitoring , Female , Genome, Viral/genetics , Humans , Madagascar/epidemiology , Male , Middle Aged , Nasopharynx/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Travel
9.
BMC Med ; 18(1): 173, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32600414

ABSTRACT

BACKGROUND: In Madagascar, the multidrug-resistant tuberculosis (MDR-TB) surveillance programme was launched in late 2012 wherein previously treated TB cases and symptomatic MDR-TB contacts (hereafter called presumptive MDR-TB cases) undergo drug susceptibility testing. This retrospective review had per aim to provide an update on the national MDR-TB epidemiology, assess and enhance programmatic performance and assess Madagascar's MDR-TB cascade of care. METHODS: For 2012-2017, national TB control programme notification, clinical management data and reference laboratory data were gathered. The development and coverage of the surveillance programme, the MDR-TB epidemiology and programmatic performance indicators were assessed using descriptive, logistic and spatial statistical analyses. Data for 2017 was further used to map Madagascar's TB and MDR-TB cascade of care. RESULTS: The geographical coverage and diagnostic and referral capacities of the MDR-TB surveillance programme were gradually expanded whereas regional variations persist with regard to coverage, referral rates and sample referral delays. Overall, the rate of MDR-TB among presumptive MDR-TB cases remained relatively stable, ranging between 3.9% in 2013 and 4.4% in 2017. Most MDR-TB patients were lost in the second gap of the cascade pertaining to MDR-TB cases reaching diagnostic centres but failing to be accurately diagnosed (59.0%). This poor success in diagnosis of MDR-TB is due to both the current use of low-sensitivity smear microscopy as a first-line diagnostic assay for TB and the limited access to any form of drug susceptibility testing. Presumptive MDR-TB patients' sample referral took a mean delay of 28 days before testing. Seventy-five percent of diagnosed MDR-TB patients were appropriately initiated on treatment, and 33% reached long-term recurrence-free survival. CONCLUSIONS: An expansion of the coverage and strengthening of MDR-TB diagnostic and management capacities are indicated across all regions of Madagascar. With current limitations, the surveillance programme data is likely to underestimate the true MDR-TB burden in the country and an updated national MDR-TB prevalence survey is warranted. In absence of multiple drivers of an MDR-TB epidemic, including high MDR-TB rates, high HIV infection rates and inter-country migration, Madagascar is in a favourable starting position for MDR-TB control and elimination.


Subject(s)
Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/pharmacology , Female , History, 21st Century , Humans , Madagascar , Male , Prevalence , Retrospective Studies , Time Factors
10.
BMC Med ; 18(1): 26, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32036785

ABSTRACT

BACKGROUND: Many malaria-endemic areas experience seasonal fluctuations in case incidence as Anopheles mosquito and Plasmodium parasite life cycles respond to changing environmental conditions. Identifying location-specific seasonality characteristics is useful for planning interventions. While most existing maps of malaria seasonality use fixed thresholds of rainfall, temperature, and/or vegetation indices to identify suitable transmission months, we construct a statistical modelling framework for characterising the seasonal patterns derived directly from monthly health facility data. METHODS: With data from 2669 of the 3247 health facilities in Madagascar, a spatiotemporal regression model was used to estimate seasonal patterns across the island. In the absence of catchment population estimates or the ability to aggregate to the district level, this focused on the monthly proportions of total annual cases by health facility level. The model was informed by dynamic environmental covariates known to directly influence seasonal malaria trends. To identify operationally relevant characteristics such as the transmission start months and associated uncertainty measures, an algorithm was developed and applied to model realisations. A seasonality index was used to incorporate burden information from household prevalence surveys and summarise 'how seasonal' locations are relative to their surroundings. RESULTS: Positive associations were detected between monthly case proportions and temporally lagged covariates of rainfall and temperature suitability. Consistent with the existing literature, model estimates indicate that while most parts of Madagascar experience peaks in malaria transmission near March-April, the eastern coast experiences an earlier peak around February. Transmission was estimated to start in southeast districts before southwest districts, suggesting that indoor residual spraying should be completed in the same order. In regions where the data suggested conflicting seasonal signals or two transmission seasons, estimates of seasonal features had larger deviations and therefore less certainty. CONCLUSIONS: Monthly health facility data can be used to establish seasonal patterns in malaria burden and augment the information provided by household prevalence surveys. The proposed modelling framework allows for evidence-based and cohesive inferences on location-specific seasonal characteristics. As health surveillance systems continue to improve, it is hoped that more of such data will be available to improve our understanding and planning of intervention strategies.


Subject(s)
Health Facilities/statistics & numerical data , Malaria/epidemiology , Data Analysis , Humans , Incidence , Madagascar , Seasons
12.
Lancet Infect Dis ; 19(5): 537-545, 2019 05.
Article in English | MEDLINE | ID: mdl-30930106

ABSTRACT

BACKGROUND: Madagascar accounts for 75% of global plague cases reported to WHO, with an annual incidence of 200-700 suspected cases (mainly bubonic plague). In 2017, a pneumonic plague epidemic of unusual size occurred. The extent of this epidemic provides a unique opportunity to better understand the epidemiology of pneumonic plagues, particularly in urban settings. METHODS: Clinically suspected plague cases were notified to the Central Laboratory for Plague at Institut Pasteur de Madagascar (Antananarivo, Madagascar), where biological samples were tested. Based on cases recorded between Aug 1, and Nov 26, 2017, we assessed the epidemiological characteristics of this epidemic. Cases were classified as suspected, probable, or confirmed based on the results of three types of diagnostic tests (rapid diagnostic test, molecular methods, and culture) according to 2006 WHO recommendations. FINDINGS: 2414 clinically suspected plague cases were reported, including 1878 (78%) pneumonic plague cases, 395 (16%) bubonic plague cases, one (<1%) septicaemic case, and 140 (6%) cases with unspecified clinical form. 386 (21%) of 1878 notified pneumonic plague cases were probable and 32 (2%) were confirmed. 73 (18%) of 395 notified bubonic plague cases were probable and 66 (17%) were confirmed. The case fatality ratio was higher among confirmed cases (eight [25%] of 32 cases) than probable (27 [8%] of 360 cases) or suspected pneumonic plague cases (74 [5%] of 1358 cases) and a similar trend was seen for bubonic plague cases (16 [24%] of 66 confirmed cases, four [6%] of 68 probable cases, and six [2%] of 243 suspected cases). 351 (84%) of 418 confirmed or probable pneumonic plague cases were concentrated in Antananarivo, the capital city, and Toamasina, the main seaport. All 50 isolated Yersinia pestis strains were susceptible to the tested antibiotics. INTERPRETATION: This predominantly urban plague epidemic was characterised by a large number of notifications in two major urban areas and an unusually high proportion of pneumonic forms, with only 23% having one or more positive laboratory tests. Lessons about clinical and biological diagnosis, case definition, surveillance, and the logistical management of the response identified in this epidemic are crucial to improve the response to future plague outbreaks. FUNDING: US Agency for International Development, WHO, Institut Pasteur, US Department of Health and Human Services, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases, Models of Infectious Disease Agent Study of the National Institute of General Medical Sciences, AXA Research Fund, and the INCEPTION programme.


Subject(s)
Epidemics , Plague/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cities/epidemiology , Female , Humans , Incidence , Infant , Infant, Newborn , Madagascar/epidemiology , Male , Middle Aged , Plague/diagnosis , Yersinia pestis/isolation & purification , Young Adult
13.
Emerg Infect Dis ; 25(2): 220-228, 2019 02.
Article in English | MEDLINE | ID: mdl-30666930

ABSTRACT

Madagascar is more seriously affected by plague, a zoonosis caused by Yersinia pestis, than any other country. The Plague National Control Program was established in 1993 and includes human surveillance. During 1998-2016, a total of 13,234 suspected cases were recorded, mainly from the central highlands; 27% were confirmed cases, and 17% were presumptive cases. Patients with bubonic plague (median age 13 years) represented 93% of confirmed and presumptive cases, and patients with pneumonic plague (median age 29 years) represented 7%. Deaths were associated with delay of consultation, pneumonic form, contact with other cases, occurrence after 2009, and not reporting dead rats. A seasonal pattern was observed with recrudescence during September-March. Annual cases peaked in 2004 and decreased to the lowest incidence in 2016. This overall reduction occurred primarily for suspected cases and might be caused by improved adherence to case criteria during widespread implementation of the F1 rapid diagnostic test in 2002.


Subject(s)
Plague/epidemiology , Yersinia pestis , Antigens, Bacterial/immunology , Case-Control Studies , Data Analysis , Disease Outbreaks , History, 20th Century , History, 21st Century , Humans , Immunoassay , Madagascar/epidemiology , Plague/diagnosis , Plague/history , Plague/microbiology , Population Surveillance , Risk Factors , Seroepidemiologic Studies , Yersinia pestis/immunology
14.
Article in English | MEDLINE | ID: mdl-30486244

ABSTRACT

Madagascar is cited as one of the most vulnerable countries to the effects of climate change, with significant impacts to the health of its population. In this study, the vulnerability of Madagascar's health sector to climate change was assessed and appropriate adaptation measures were identified. In order to assess climate risks, vulnerability and identify adaptation options, the Madagascar Ministry of Public Health as well as the National Meteorological and Hydrological Service worked in close collaboration with a team of local experts to conduct a literature review, field surveys, and analyses of current and future climate and health trends. Four climate-sensitive diseases of primary concern are described in the study: acute respiratory infections (ARI), diarrhea, malnutrition, and malaria. Baseline conditions of these four diseases from 2000 to 2014 show acute respiratory infections and diarrheal diseases are increasing in incidence; while incidence of malnutrition and malaria decreased over this period. To assess future impacts in Madagascar, this baseline information was used with climate projections for the two scenarios-RCP 4.5 and RCP 8.5-for the periods 2016⁻2035, 2036⁻2070 and 2071⁻2100. Future climate conditions are shown to exacerbate and increase the incidence of all four climate sensitive diseases. Further analysis of the exposure, sensitivity and adaptive capacity to the climate hazards suggests that the health sector in four regions of Madagascar is particularly vulnerable. The study recommends adaptation measures to improve the monitoring and early warning systems for climate sensitive diseases, as well as to reduce population vulnerability.


Subject(s)
Acclimatization , Adaptation, Physiological , Climate Change , Environmental Monitoring/methods , Health Status Indicators , Population Surveillance/methods , Public Health Surveillance/methods , Diarrhea/epidemiology , Humans , Incidence , Madagascar/epidemiology , Malaria/epidemiology , Malnutrition/epidemiology , Respiratory Tract Infections/epidemiology
15.
Malar J ; 17(1): 58, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29391023

ABSTRACT

BACKGROUND: Malaria is one of the primary health concerns in Madagascar. Based on the duration and intensity of transmission, Madagascar is divided into five epidemiological strata that range from low to mesoendemic transmission. In this study, the spatial and temporal dynamics of malaria within each epidemiological zone were studied. METHODS: The number of reported cases of uncomplicated malaria from 112 health districts between 2010 and 2014 were compiled and analysed. First, a Standardized Incidence Ratio was calculated to detect districts with anomalous incidence compared to the stratum-level incidence. Building on this, spatial and temporal malaria clusters were identified throughout the country and their variability across zones and over time was analysed. RESULTS: The incidence of malaria increased from 2010 to 2014 within each stratum. A basic analysis showed that districts with more than 50 cases per 1000 inhabitants are mainly located in two strata: East and West. Lower incidence values were found in the Highlands and Fringe zones. The standardization method revealed that the number of districts with a higher than expected numbers of cases increased through time and expanded into the Highlands and Fringe zones. The cluster analysis showed that for the endemic coastal region, clusters of districts migrated southward and the incidence of malaria was the highest between January and July with some variation within strata. CONCLUSION: This study identified critical districts with low incidence that shifted to high incidence and district that were consistent clusters across each year. The current study provided a detailed description of changes in malaria epidemiology and can aid the national malaria programme to reduce and prevent the expansion of the disease by targeting the appropriate areas.


Subject(s)
Malaria, Falciparum/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cluster Analysis , Cohort Studies , Humans , Incidence , Infant , Infant, Newborn , Madagascar/epidemiology , Spatio-Temporal Analysis , Young Adult
16.
BMC Public Health ; 17(1): 636, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28778194

ABSTRACT

BACKGROUND: WHO developed a global strategy to eliminate hepatitis B by 2030 and set target to treat 80% of people with chronic hepatitis B virus (HBV) infection eligible for antiviral treatment. As a first step to achieve this goal, it is essential to conduct a situation analysis that is fundamental to designing national hepatitis plans. We therefore estimated the prevalence of chronic HBV infection, and described the existing infrastructure for HBV diagnosis in Madagascar. METHODS: We conducted a stratified multi-stage serosurvey of hepatitis B surface antigen (HBsAg) in adults aged ≥18 years using 28 sentinel surveillance sites located throughout the country. We obtained the list of facilities performing HBV testing from the Ministry of Health, and contacted the person responsible at each facility. RESULTS: A total of 1778 adults were recruited from the 28 study areas. The overall weighted seroprevalence of HBsAg was 6.9% (95% CI: 5.6-8.6). Populations with a low socio-economic status and those living in rural areas had a significantly higher seroprevalence of HBsAg. The ratio of facilities equipped to perform HBsAg tests per 100,000 inhabitants was 1.02 in the capital city of Antananarivo and 0.21 outside the capital. There were no facilities with the capacity to perform HBV DNA testing or transient elastography to measure liver fibrosis. There are only five hepatologists in Madagascar. CONCLUSION: Madagascar has a high-intermediate level of endemicity for HBV infection with a severely limited capacity for its diagnosis and treatment. Higher HBsAg prevalence in rural or underprivileged populations underlines the importance of a public health approach to decentralize the management of chronic HBV carriers in Madagascar by using simple and low-cost diagnostic tools.


Subject(s)
Hepatitis B, Chronic/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , DNA, Viral , Female , Humans , Madagascar/epidemiology , Male , Middle Aged , Prevalence , Residence Characteristics/statistics & numerical data , Rural Population , Seroepidemiologic Studies , Socioeconomic Factors , World Health Organization , Young Adult
17.
BMC Infect Dis ; 17(1): 562, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28806916

ABSTRACT

BACKGROUND: Tuberculosis (TB) remains a public health problem in Madagascar. A crucial element of TB control is the development of an easy and rapid method for the orientation of TB control strategies in the country. Our main objective was to develop a TB spatial hotspot identification method by combining spatial analysis and TB genotyping method in Antananarivo. METHODS: Sputa of new pulmonary TB cases from 20 TB diagnosis and treatment centers (DTCs) in Antananarivo were collected from August 2013 to May 2014 for culture. Mycobacterium tuberculosis complex (MTBC) clinical isolates were typed by spoligotyping on a Luminex® 200 platform. All TB patients were respectively localized according to their neighborhood residence and the spatial distribution of all pulmonary TB patients and patients with genotypic clustered isolates were scanned respectively by the Kulldorff spatial scanning method for identification of significant spatial clustering. Areas exhibiting spatial clustering of patients with genotypic clustered isolates were considered as hotspot TB areas for transmission. RESULTS: Overall, 467 new cases were included in the study, and 394 spoligotypes were obtained (84.4%). New TB cases were distributed in 133 of the 192 Fokontany (administrative neighborhoods) of Antananarivo (1 to 15 clinical patients per Fokontany) and patients with genotypic clustered isolates were distributed in 127 of the 192 Fokontany (1 to 13 per Fokontany). A single spatial focal point of epidemics was detected when ignoring genotypic data (p = 0.039). One Fokontany of this focal point and three additional ones were detected to be spatially clustered when taking genotypes into account (p < 0.05). These four areas were declared potential TB transmission hotspots in Antananarivo and will be considered as priority targets for surveillance in the future. CONCLUSION: This method, combining spatial analysis and TB genotyping will now be used for further focused clinical and epidemiological studies in Madagascar and will allow better TB control strategies by public health authorities.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/epidemiology , Genetic Variation , Genotype , Humans , Madagascar/epidemiology , Mycobacterium tuberculosis/isolation & purification , Spatial Analysis , Sputum/microbiology
18.
Malar J ; 16(1): 72, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28193215

ABSTRACT

BACKGROUND: The use of a malaria early warning system (MEWS) to trigger prompt public health interventions is a key step in adding value to the epidemiological data routinely collected by sentinel surveillance systems. METHODS: This study describes a system using various epidemic thresholds and a forecasting component with the support of new technologies to improve the performance of a sentinel MEWS. Malaria-related data from 21 sentinel sites collected by Short Message Service are automatically analysed to detect malaria trends and malaria outbreak alerts with automated feedback reports. RESULTS: Roll Back Malaria partners can, through a user-friendly web-based tool, visualize potential outbreaks and generate a forecasting model. The system already demonstrated its ability to detect malaria outbreaks in Madagascar in 2014. CONCLUSION: This approach aims to maximize the usefulness of a sentinel surveillance system to predict and detect epidemics in limited-resource environments.


Subject(s)
Epidemics , Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Forecasting , Humans , Infant , Infant, Newborn , Internet , Madagascar/epidemiology , Male , Middle Aged , Prospective Studies , Retrospective Studies , Sentinel Surveillance , Software , Text Messaging , Young Adult
20.
PLoS Negl Trop Dis ; 10(7): e0004827, 2016 07.
Article in English | MEDLINE | ID: mdl-27415438

ABSTRACT

BACKGROUND: Rift Valley fever (RVF) is a vector-borne disease affecting ruminants and humans. Madagascar was heavily affected by RVF in 2008-2009, with evidence of a large and heterogeneous spread of the disease. The identification of at-risk environments is essential to optimize the available resources by targeting RVF surveillance in Madagascar. Herein, the objectives of our study were: (i) to identify the environmental factors and areas favorable to RVF transmission to both cattle and human and (ii) to identify human behaviors favoring human infections in Malagasy contexts. METHODOLOGY/PRINCIPAL FINDINGS: First, we characterized the environments of Malagasy communes using a Multiple Factor Analysis (MFA). Then, we analyzed cattle and human serological data collected at national level using Generalized Linear Mixed Models, with the individual serological status (cattle or human) as the response, and MFA factors, as well as other potential risk factors (cattle density, human behavior) as explanatory variables. Cattle and human seroprevalence rates were positively associated to humid environments (p<0.001). Areas with high cattle density were at risk (p<0.01; OR = 2.6). Furthermore, our analysis showed that frequent contact with raw milk contributed to explain human infection (OR = 1.6). Finally, our study highlighted the eastern-coast, western and north-western parts as high-risk areas for RVF transmission in cattle. CONCLUSIONS/SIGNIFICANCE: Our integrated approach analyzing environmental, cattle and human datasets allow us to bring new insight on RVF transmission patterns in Madagascar. The association between cattle seroprevalence, humid environments and high cattle density suggests that concomitant vectorial and direct transmissions are critical to maintain RVF enzootic transmission. Additionally, in the at-risk humid environment of the western, north-western and the eastern-coast areas, suitable to Culex and Anopheles mosquitoes, vectorial transmission probably occurs in both cattle and human. The relative contribution of vectorial or direct transmissions could be further assessed by mathematic modelling.


Subject(s)
Anopheles/virology , Cattle Diseases/transmission , Culex/virology , Insect Vectors/virology , Rift Valley Fever/transmission , Rift Valley fever virus/physiology , Adult , Animals , Anopheles/physiology , Antibodies, Viral/blood , Cattle , Cattle Diseases/blood , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cross-Sectional Studies , Culex/physiology , Environment , Female , Humans , Insect Vectors/physiology , Madagascar/epidemiology , Male , Middle Aged , Rift Valley Fever/blood , Rift Valley Fever/epidemiology , Rift Valley Fever/virology , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...