Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 11(Pt 2): 129-31, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14960776

ABSTRACT

The National Synchrotron Light Source (NSLS) 2.8 GeV electron storage ring continues to set high standards in insertion-device research and development. The Chasman-Green NSLS lattice design provides for dispersion-free long straight sections in addition to a very small vertical beta function. As the electron beam size is proportional to the square root of this function, a program to exploit this feature was undertaken more than a decade ago by implementing short-period small-gap insertion devices in the NSLS storage ring. The possibility of utilizing existing moderate-energy synchrotron radiation electron storage rings to produce high-brightness photon beams into the harder X-ray region have been realised using in-vacuum undulators. In this article the operation of a 1.25 cm-period mini-gap undulator, operating down to a gap of 3.3 mm within the NSLS X13 straight section, is reported. It is the brightest source of hard X-rays in the energy range approximately 3.7-16 keV at the NSLS, and replaces an in-vacuum undulator which had a more limited tunability.


Subject(s)
Crystallography, X-Ray/instrumentation , Equipment Design , Equipment Failure Analysis , Synchrotrons/instrumentation , Transducers , Crystallography, X-Ray/methods , Miniaturization , United States
2.
Phys Rev Lett ; 91(7): 074801, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12935021

ABSTRACT

We report the first experimental results on a high-gain harmonic-generation (HGHG) free-electron laser (FEL) operating in the ultraviolet. An 800 nm seed from a Ti:sapphire laser has been used to produce saturated amplified radiation at the 266 nm third harmonic. The results confirm the predictions for HGHG FEL operation: stable central wavelength, narrow bandwidth, and small pulse-energy fluctuation.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(6 Pt 2): 066501, 2003 Jun.
Article in English | MEDLINE | ID: mdl-16241361

ABSTRACT

VISA (Visible to Infrared SASE Amplifier) is a high-gain self-amplified spontaneous emission (SASE) free-electron laser (FEL), which achieved saturation at 840 nm within a single-pass 4-m undulator. The experiment was performed at the Accelerator Test Facility at BNL, using a high brightness 70-MeV electron beam. A gain length shorter than 18 cm has been obtained, yielding a total gain of 2 x 10(8) at saturation. The FEL performance, including the spectral, angular, and statistical properties of SASE radiation, has been characterized for different electron beam conditions. Results are compared to the three-dimensional SASE FEL theory and start-to-end numerical simulations of the entire injector, transport, and FEL systems. An agreement between simulations and experimental results has been obtained at an unprecedented level of detail.

4.
Phys Rev Lett ; 86(26 Pt 1): 5902-5, 2001 Jun 25.
Article in English | MEDLINE | ID: mdl-11415390

ABSTRACT

We report on an experimental investigation characterizing the output of a high-gain harmonic-generation (HGHG) free-electron laser (FEL) at saturation. A seed CO2 laser at a wavelength of 10.6 microm was used to generate amplified FEL output at 5.3 microm. Measurement of the frequency spectrum, pulse duration, and correlation length of the 5.3 microm output verified that the light is longitudinally coherent. Investigation of the electron energy distribution and output harmonic energies provides evidence for saturated HGHG FEL operation.

5.
Science ; 289(5481): 932-5, 2000 Aug 11.
Article in English | MEDLINE | ID: mdl-10937992

ABSTRACT

A high-gain harmonic-generation free-electron laser is demonstrated. Our approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser. A seed carbon dioxide laser at a wavelength of 10.6 micrometers produced saturated, amplified free-electron laser output at the second-harmonic wavelength, 5.3 micrometers. The experiment verifies the theoretical foundation for the technique and prepares the way for the application of this technique in the vacuum ultraviolet region of the spectrum, with the ultimate goal of extending the approach to provide an intense, highly coherent source of hard x-rays.

6.
J Synchrotron Radiat ; 5(Pt 3): 417-9, 1998 May 01.
Article in English | MEDLINE | ID: mdl-15263530

ABSTRACT

A short-period in-vacuum undulator for the NSLS X-ray Ring has been developed in a collaboration between SPring-8 and the NSLS, and has achieved its project design goals during commissioning studies. The device is called IVUN (in-vacuum undulator) and employs magnet arrays (31 periods, with an 11 mm period) developed at SPring-8, while the requisite vacuum chamber and mechanical systems were developed at the NSLS. At a magnet gap of 3.3 mm, IVUN produces 4.6 keV radiation in the fundamental, with useful photon fluxes in both the second and third harmonics. The magnet gap is adjustable between 2 and 10 mm. A brief overview of IVUN is presented, together with initial commissioning results: the dependence of electron-beam lifetime and bremsstrahlung on magnet gap, and the output radiation spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...