Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 151(21): 214307, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31822087

ABSTRACT

We report a database consisting of the putative minima and ∼3.2 × 106 local minima lying within 5 kcal/mol from the putative minima for water clusters of sizes n = 3-25 using an improved version of the Monte Carlo temperature basin paving (MCTBP) global optimization procedure in conjunction with the ab initio based, flexible, polarizable Thole-Type Model (TTM2.1-F, version 2.1) interaction potential for water. Several of the low-lying structures, as well as low-lying penta-coordinated water networks obtained with the TTM2.1-F potential, were further refined at the Møller-Plesset second order perturbation (MP2)/aug-cc-pVTZ level of theory. In total, we have identified 3 138 303 networks corresponding to local minima of the clusters n = 3-25, whose Cartesian coordinates and relative energies can be obtained from the webpage https://sites.uw.edu/wdbase/. Networks containing penta-coordinated water molecules start to appear at n = 11 and, quite surprisingly, are energetically close (within 1-3 kcal/mol) to the putative minima, a fact that has been confirmed from the MP2 calculations. This large database of water cluster minima spanning quite dissimilar hydrogen bonding networks is expected to influence the development and assessment of the accuracy of interaction potentials for water as well as lower scaling electronic structure methods (such as different density functionals). Furthermore, it can also be used in conjunction with data science approaches (including but not limited to neural networks and machine and deep learning) to understand the properties of water, nature's most important substance.

2.
J Chem Phys ; 141(16): 164304, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25362296

ABSTRACT

We report new global minimum candidate structures for the (H2O)25 cluster that are lower in energy than the ones reported previously and correspond to hydrogen bonded networks with 42 hydrogen bonds and an interior, fully coordinated water molecule. These were obtained as a result of a hierarchical approach based on initial Monte Carlo Temperature Basin Paving sampling of the cluster's Potential Energy Surface with the Effective Fragment Potential, subsequent geometry optimization using the Molecular Tailoring Approach with the fragments treated at the second order Møller-Plesset (MP2) perturbation (MTA-MP2) and final refinement of the entire cluster at the MP2 level of theory. The MTA-MP2 optimized cluster geometries, constructed from the fragments, were found to be within <0.5 kcal/mol from the minimum geometries obtained from the MP2 optimization of the entire (H2O)25 cluster. In addition, the grafting of the MTA-MP2 energies yields electronic energies that are within <0.3 kcal/mol from the MP2 energies of the entire cluster while preserving their energy rank order. Finally, the MTA-MP2 approach was found to reproduce the MP2 harmonic vibrational frequencies, constructed from the fragments, quite accurately when compared to the MP2 ones of the entire cluster in both the HOH bending and the OH stretching regions of the spectra.


Subject(s)
Models, Molecular , Monte Carlo Method , Quantum Theory , Temperature , Water/chemistry , Hydrogen Bonding , Isomerism , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...