Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 18(4): e1009943, 2022 04.
Article in English | MEDLINE | ID: mdl-35377874

ABSTRACT

Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX (BacteRiophage EXclusion) systems. These RM-like activities employ host protection by DNA modification, but immediate replication arrest occurs without evident of nuclease action on unmodified phage DNA. Here we show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a variant BREX system. A laboratory strain disabled for both the restriction and methylation activity of StySA nevertheless has wild type sequence in pglX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (µ) in their C-terminal domains. We further investigate this system in situ, replacing the mutated pglZµ and brxCµ genes with the WT counterpart. PglZ-WT supports methylation in the presence of either BrxCµ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. These results suggests that while BrxC, PglZ and PglX are principal components of the BREX modification activity, BrxL is required for restriction only. Furthermore, we show that a partial disruption of brxL disrupts transcription globally.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Bacteriophages/metabolism , DNA, Viral , Methylation , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
2.
G3 (Bethesda) ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34544129

ABSTRACT

The Salmonella research community has used strains and bacteriophages over decades, exchanging useful new isolates among laboratories for the study of cell surface antigens, metabolic pathways and restriction-modification (RM) studies. Here we present the sequences of two laboratory Salmonella strains (STK005, an isolate of LB5000; and its descendant ER3625). In the ancestry of LB5000, segments of ∼15 and ∼42 kb were introduced from Salmonella enterica sv Abony 803 into S. enterica sv Typhimurium LT2, forming strain SD14; this strain is thus a hybrid of S. enterica isolates. Strains in the SD14 lineage were used to define flagellar antigens from the 1950s to the 1970s, and to define three RM systems from the 1960s to the 1980s. LB5000 was also used as a host in phage typing systems used by epidemiologists. In the age of cheaper and easier sequencing, this resource will provide access to the sequence that underlies the extensive literature.


Subject(s)
Bacteriophages , Salmonella typhimurium , Archaeology , Laboratories , Prophages , Salmonella typhimurium/genetics
3.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33707333

ABSTRACT

The genome of Salmonella enterica serovar Typhimurium LT7 comprises a chromosome and two plasmids. One plasmid is very close to pSLT of Salmonella Typhimurium LT2; the second harbors a shufflon region. Prophage content is distinct: LT7 lacks Fels-1, while Gifsy-1 and Fels-2 show island-like divergence and likely programmed inversion, respectively.

4.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561243

ABSTRACT

Bacteriophage L, a P22-like phage of Salmonella enterica sv Typhimurium LT2, was important for definition of mosaic organization of the lambdoid phage family and for characterization of restriction-modification systems of Salmonella. We report the complete genome sequences of bacteriophage L cI-40 13-am43 and L cII-101; the deduced sequence of wildtype L is 40,633 bp long with a 47.5% GC content. We compare this sequence with those of P22 and ST64T, and predict 72 Coding Sequences, 2 tRNA genes and 14 intergenic rho-independent transcription terminators. The overall genome organization of L agrees with earlier genetic and physical evidence; for example, no secondary immunity region (immI: ant, arc) or known genes for superinfection exclusion (sieA and sieB) are present. Proteomic analysis confirmed identification of virion proteins, along with low levels of assembly intermediates and host cell envelope proteins. The genome of L is 99.9% identical at the nucleotide level to that reported for phage ST64T, despite isolation on different continents ∼35 years apart. DNA modification by the epigenetic regulator Dam is generally incomplete. Dam modification is also selectively missing in one location, corresponding to the P22 phase-variation-sensitive promoter region of the serotype-converting gtrABC operon. The number of sites for SenLTIII (StySA) action may account for stronger restriction of L (13 sites) than of P22 (3 sites).


Subject(s)
Bacteriophages , Salmonella typhimurium , DNA Restriction-Modification Enzymes , Proteomics , Serogroup
5.
Nucleic Acids Res ; 48(22): 12858-12873, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33270887

ABSTRACT

Analysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the double-stranded form.


Subject(s)
DNA Methylation/genetics , DNA Polymerase I/genetics , DNA, Single-Stranded/genetics , Methyltransferases/genetics , Bacterial Proteins/genetics , Burkholderia cenocepacia/genetics , DNA Replication/genetics , Escherichia coli O104/genetics , Escherichia coli Proteins/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Ribosomal Proteins/genetics
6.
PLoS One ; 12(6): e0179853, 2017.
Article in English | MEDLINE | ID: mdl-28654677

ABSTRACT

Here we characterize the modification-dependent restriction enzyme (MDE) EcoBLMcrX in vivo, in vitro and in its genomic environment. MDE cleavage of modified DNAs protects prokaryote populations from lethal infection by bacteriophage with highly modified DNA, and also stabilizes lineages by reducing gene import when sparse modification occurs in the wrong context. The function and distribution of MDE families are thus important. Here we describe the properties of EcoBLMcrX, an enzyme of the E. coli B lineage, in vivo and in vitro. Restriction in vivo and the genome location of its gene, ecoBLmcrX, were determined during construction and sequencing of a B/K-12 hybrid, ER2566. In classical restriction literature, this B system was named r6 or rglAB. Like many genome defense functions, ecoBLmcrX is found within a genomic island, where gene content is variable among natural E. coli isolates. In vitro, EcoBLMcrX was compared with two related enzymes, BceYI and NhoI. All three degrade fully cytosine-modified phage DNA, as expected for EcoBLMcrX from classical T4 genetic data. A new method of characterizing MDE specificity was developed to better understand action on fully-modified targets such as the phage that provide major evolutionary pressure for MDE maintenance. These enzymes also cleave plasmids with m5C in particular motifs, consistent with a role in lineage-stabilization. The recognition sites were characterized using a site-ranking approach that allows visualization of preferred cleavage sites when fully-modified substrates are digested. A technical constraint on the method is that ligation of one-nucleotide 5' extensions favors G:C over A:T approximately five-fold. Taking this bias into account, we conclude that EcoBLMcrX can cleave 3' to the modified base in the motif Rm5C|. This is compatible with, but less specific than, the site reported by others. Highly-modified site contexts, such as those found in base-substituted virulent phages, are strongly preferred.


Subject(s)
DNA Restriction Enzymes/metabolism , Escherichia coli/metabolism , DNA Restriction Enzymes/genetics , Escherichia coli/genetics , Mutation
7.
J Bacteriol ; 199(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28096446

ABSTRACT

Bacteria use a variety of DNA-mobilizing enzymes to facilitate environmental niche adaptation via horizontal gene transfer. This has led to real-world problems, like the spread of antibiotic resistance, yet many mobilization proteins remain undefined. In the study described here, we investigated the uncharacterized family of YhgA-like transposase_31 (Pfam PF04754) proteins. Our primary focus was the genetic and biochemical properties of the five Escherichia coli K-12 members of this family, which we designate RpnA to RpnE, where Rpn represents recombination-promoting nuclease. We employed a conjugal system developed by our lab that demanded RecA-independent recombination following transfer of chromosomal DNA. Overexpression of RpnA (YhgA), RpnB (YfcI), RpnC (YadD), and RpnD (YjiP) increased RecA-independent recombination, reduced cell viability, and induced the expression of reporter of DNA damage. For the exemplar of the family, RpnA, mutational changes in proposed catalytic residues reduced or abolished all three phenotypes in concert. In vitro, RpnA displayed magnesium-dependent, calcium-stimulated DNA endonuclease activity with little, if any, sequence specificity and a preference for double-strand cleavage. We propose that Rpn/YhgA-like family nucleases can participate in gene acquisition processes.IMPORTANCE Bacteria adapt to new environments by obtaining new genes from other bacteria. Here, we characterize a set of genes that can promote the acquisition process by a novel mechanism. Genome comparisons had suggested the horizontal spread of the genes for the YhgA-like family of proteins through bacteria. Although annotated as transposase_31, no member of the family has previously been characterized experimentally. We show that four Escherichia coli K-12 paralogs contribute to a novel RecA-independent recombination mechanism in vivo For RpnA, we demonstrate in vitro action as a magnesium-dependent, calcium-stimulated nonspecific DNA endonuclease. The cleavage products are capable of providing priming sites for DNA polymerase, which can enable DNA joining by primer-template switching.


Subject(s)
Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Gene Transfer, Horizontal/physiology , Rec A Recombinases/metabolism , Calcium/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Enzymologic , Magnesium/metabolism , Protein Transport , Rec A Recombinases/genetics , Recombination, Genetic
8.
Genome Announc ; 4(6)2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27834703

ABSTRACT

Escherichia coli K-12 DH5α is one of the most popular and widely available laboratory strains, but, surprisingly, no complete genome sequence has been publicly available. Here, we report the complete, finished sequence of NEB 5-alpha (DH5α fhuA2). It should serve as a useful reference for researchers working with DH5α.

9.
Genome Announc ; 4(4)2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27516504

ABSTRACT

We present here the complete genomic sequence of a rifampin-resistant derivative of the Escherichia coli K-12 laboratory strain ER1821, engineered to be deficient in all known restriction systems, making it suitable for generating unbiased libraries from organisms with non-K-12 methylation patterns. The ER1821R genome is most closely related to that of DH1, another popular cloning strain (both derived from MM294), but is deleted for the e14 prophage (McrA(-)) and the immigration control (McrBC(-) EcoKI R(-) M(-) Mrr(-)) loci.

10.
Chem Rev ; 116(20): 12655-12687, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27319741

ABSTRACT

Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.


Subject(s)
Bacteria/metabolism , Bacteriophages/metabolism , Nucleotides/biosynthesis , Bacteria/virology , Bacteriophages/genetics , DNA Modification Methylases/metabolism , Genes, Viral
11.
Genome Announc ; 4(2)2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27034504

ABSTRACT

SHuffle strains are genetically engineeredEscherichia colistrains that are capable of oxidizing cysteines within proteins to form disulfide bonds. Here we present the complete genome of both the K-12 and B versions of SHuffle strains along with their parental ancestors. These strains have been of significant use to both the general scientific community and the biotech industry, interested in producing novel disulfide-bonded proteins that were hitherto unable to be expressed in standardE. coliexpression strains.

13.
PLoS One ; 10(7): e0130813, 2015.
Article in English | MEDLINE | ID: mdl-26162088

ABSTRACT

In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour.


Subject(s)
Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Gene Transfer, Horizontal , Rec A Recombinases/genetics , Chromosomes, Bacterial/genetics , Conjugation, Genetic , DNA, Bacterial/genetics , Drug Resistance, Microbial/genetics , Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Genome, Bacterial/genetics , Genomic Islands/genetics , Homologous Recombination , Models, Genetic , Rec A Recombinases/metabolism
14.
PLoS One ; 10(5): e0127446, 2015.
Article in English | MEDLINE | ID: mdl-26010885

ABSTRACT

We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems.


Subject(s)
Escherichia coli K12/genetics , Genome, Bacterial/genetics , Methyltransferases/genetics , Methyltransferases/deficiency , Molecular Sequence Data
15.
Nucleic Acids Res ; 42(1): 56-69, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23990325

ABSTRACT

The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980's, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I-III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.


Subject(s)
DNA Restriction Enzymes/chemistry , DNA Restriction Enzymes/metabolism , DNA/metabolism , DNA Methylation , DNA Restriction Enzymes/classification , Evolution, Molecular , Protein Multimerization
16.
Nucleic Acids Res ; 42(1): 20-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24068554

ABSTRACT

Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.


Subject(s)
Deoxyribonucleases, Type I Site-Specific/chemistry , Deoxyribonucleases, Type I Site-Specific/metabolism , Base Sequence , DNA/chemistry , Deoxyribonucleases, Type I Site-Specific/classification
17.
Nucleic Acids Res ; 42(1): 3-19, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24141096

ABSTRACT

In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.


Subject(s)
DNA Restriction Enzymes/history , DNA Modification Methylases/history , Deoxyribonucleases, Type I Site-Specific/history , Deoxyribonucleases, Type II Site-Specific/history , Deoxyribonucleases, Type III Site-Specific/history , History, 20th Century
18.
Nucleic Acids Res ; 40(3): e19, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22123741

ABSTRACT

The increasing interest in genetic manipulation of bacterial host metabolic pathways for protein or small molecule production has led to a need to add new genes to a chromosome quickly and easily without leaving behind a selectable marker. The present report describes a vector and four-day procedure that enable site-specific chromosomal insertion of cloned genes in a context insulated from external transcription, usable once in a construction series. The use of rhamnose-inducible transcription from rhaBp allows regulation of the inserted genes independently of the commonly used IPTG and arabinose strategies. Using lacZ as a reporter, we first show that expression from the rhamnose promoter is tightly regulatable, exhibiting very low leakage of background expression compared with background, and moderate rhamnose-induced expression compared with IPTG-induced expression from lacp. Second, the expression of a DNA methyltransferase was used to show that rhamnose regulation yielded on-off expression of this enzyme, such that a resident high-copy plasmid was either fully sensitive or fully resistant to isoschizomer restriction enzyme cleavage. In both cases, growth medium manipulation allows intermediate levels of expression. The vehicle can also be adapted as an ORF-cloning vector.


Subject(s)
Chromosomes, Bacterial , DNA Transposable Elements , Gene Targeting/methods , Cloning, Molecular/methods , DNA Primers , Escherichia coli/genetics , Genetic Vectors , Promoter Regions, Genetic , Protein Biosynthesis , Rhamnose/pharmacology , Transcription, Genetic/drug effects , beta-Galactosidase/genetics
19.
Nucleic Acids Res ; 39(13): 5489-98, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21441537

ABSTRACT

Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.


Subject(s)
DNA Cleavage , DNA Methylation , DNA Replication , DNA Restriction Enzymes/metabolism , Epigenesis, Genetic , Models, Genetic
20.
PLoS One ; 5(10): e13576, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-21187861

ABSTRACT

BACKGROUND: The glycolytic phosphoglycerate mutases exist as non-homologous isofunctional enzymes (NISE) having independent evolutionary origins and no similarity in primary sequence, 3D structure, or catalytic mechanism. Cofactor-dependent PGM (dPGM) requires 2,3-bisphosphoglycerate for activity; cofactor-independent PGM (iPGM) does not. The PGM profile of any given bacterium is unpredictable and some organisms such as Escherichia coli encode both forms. METHODS/PRINCIPAL FINDINGS: To examine the distribution of PGM NISE throughout the Bacteria, and gain insight into the evolutionary processes that shape their phyletic profiles, we searched bacterial genome sequences for the presence of dPGM and iPGM. Both forms exhibited patchy distributions throughout the bacterial domain. Species within the same genus, or even strains of the same species, frequently differ in their PGM repertoire. The distribution is further complicated by the common occurrence of dPGM paralogs, while iPGM paralogs are rare. Larger genomes are more likely to accommodate PGM paralogs or both NISE forms. Lateral gene transfers have shaped the PGM profiles with intradomain and interdomain transfers apparent. Archaeal-type iPGM was identified in many bacteria, often as the sole PGM. To address the function of PGM NISE in an organism encoding both forms, we analyzed recombinant enzymes from E. coli. Both NISE were active mutases, but the specific activity of dPGM greatly exceeded that of iPGM, which showed highest activity in the presence of manganese. We created PGM null mutants in E. coli and discovered the ΔdPGM mutant grew slowly due to a delay in exiting stationary phase. Overexpression of dPGM or iPGM overcame this defect. CONCLUSIONS/SIGNIFICANCE: Our biochemical and genetic analyses in E. coli firmly establish dPGM and iPGM as NISE. Metabolic redundancy is indicated since only larger genomes encode both forms. Non-orthologous gene displacement can fully account for the non-uniform PGM distribution we report across the bacterial domain.


Subject(s)
Bacteria/enzymology , Evolution, Molecular , Gene Transfer, Horizontal , Phosphoglycerate Kinase/genetics , Bacteria/genetics , Bacteria/growth & development , Genetic Complementation Test , Genome, Archaeal , Genome, Bacterial , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...