Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Synapse ; 61(11): 925-32, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17701967

ABSTRACT

BACKGROUND: Acute depletion of tyrosine using a tyrosine-free amino acid mixture offers a novel dietary approach to inhibit activated dopamine pathways in the brain. This study investigated the potential of in vivo functional magnetic resonance imaging (fMRI) methods as a noninvasive means to detect effects of tyrosine depletion on dopamine function. METHODS: Changes in blood-oxgenation level dependent (BOLD) contrast induced by administration of the dopamine-releasing agent, amphetamine (3 mg/kg i.v.), were measured in halothane-anaesthetised rats. RESULTS: Amphetamine evoked changes in BOLD signal intensity with the greatest effects observed in the nucleus accumbens (-7.7%), prefrontal cortex (-13.6%), and motor cortex (+12.5%). Pretreatment with a tyrosine-free amino acid mixture attenuated the response to amphetamine in some regions (nucleus accumbens and prefrontal cortex), but not others (motor cortex). Amphetamine itself had no effect in thalamus and hippocampus but, surprisingly, increased the BOLD signal after the amino acid mixture. CONCLUSION: These experiments demonstrate that amphetamine evokes region-specific changes in the BOLD signal in rats, and that this effect is attenuated in some but not all regions by tyrosine depletion. The data support the application of fMRI techniques for studying the effects of tyrosine depletion on dopamine function in animals and also humans.


Subject(s)
Amphetamine/pharmacology , Brain/blood supply , Brain/drug effects , Dopamine Uptake Inhibitors/pharmacology , Magnetic Resonance Imaging , Tyrosine/deficiency , Animals , Brain/anatomy & histology , Brain Mapping , Image Processing, Computer-Assisted , Male , Oxygen/blood , Rats , Rats, Sprague-Dawley , Time Factors
2.
J Neurosci ; 23(37): 11516-22, 2003 Dec 17.
Article in English | MEDLINE | ID: mdl-14684855

ABSTRACT

Structural asymmetries in the supratemporal plane of the human brain are often cited as the anatomical basis for the lateralization of language predominantly to the left hemisphere. However, similar asymmetries are found for structures mediating earlier events in the auditory processing stream, suggesting that functional lateralization may occur even at the level of primary auditory cortex. We tested this hypothesis using functional magnetic resonance imaging to evaluate human auditory cortex responses to monaurally presented tones. Relative to silence, tones presented separately to either ear produced greater activation in left than right Heschl's gyrus, the location of primary auditory cortex. This functional lateralization for primary auditory cortex is distinct from the contralateral dominance reported for other mammals, including nonhuman primates, and may have contributed to the evolution of a unique role for the left hemisphere in language processing.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Adult , Auditory Cortex/anatomy & histology , Female , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...